Answer :

Let's break down the expression [tex]\(\sqrt{5} + \sqrt{125} + 7 \sqrt{5}\)[/tex] step by step.

1. Identify and simplify the square roots:

First, let's simplify [tex]\(\sqrt{125}\)[/tex].

[tex]\[ \sqrt{125} = \sqrt{5 \times 25} = \sqrt{5} \times \sqrt{25} = \sqrt{5} \times 5 = 5\sqrt{5} \][/tex]

So, the expression becomes:

[tex]\[ \sqrt{5} + 5\sqrt{5} + 7\sqrt{5} \][/tex]

2. Combine like terms:

Notice that all the terms have [tex]\(\sqrt{5}\)[/tex] as a common factor:

[tex]\[ \sqrt{5} + 5\sqrt{5} + 7\sqrt{5} = (1\sqrt{5} + 5\sqrt{5} + 7\sqrt{5}) \][/tex]

We can factor out [tex]\(\sqrt{5}\)[/tex]:

[tex]\[ (1 + 5 + 7) \sqrt{5} \][/tex]

Simplify inside the parentheses:

[tex]\[ 1 + 5 + 7 = 13 \][/tex]

So, the expression becomes:

[tex]\[ 13\sqrt{5} \][/tex]

3. Calculate the numerical value:

We can now evaluate the numerical value of [tex]\(13\sqrt{5}\)[/tex]:

[tex]\[ \sqrt{5} \approx 2.23606797749979 \][/tex]

Thus,

[tex]\[ 13 \times 2.23606797749979 \approx 29.068883707497267 \][/tex]

Therefore, the simplified expression [tex]\(\sqrt{5} + \sqrt{125} + 7 \sqrt{5}\)[/tex] equals:

[tex]\[ 13\sqrt{5} \approx 29.068883707497267 \][/tex]

Each step logically leads us to the final numerical result that approximates to [tex]\(29.068883707497267\)[/tex].