Answer :
Certainly! Let’s solve this problem step-by-step.
We know that:
[tex]\[ \sin 61^\circ = \sqrt{p} \][/tex]
We need to find:
[tex]\[ \sin 241^\circ \][/tex]
We can use the sine angle identity for angles greater than 180 degrees:
[tex]\[ \sin (180^\circ + \theta) = -\sin \theta \][/tex]
Here, we notice that:
[tex]\[ 241^\circ = 180^\circ + 61^\circ \][/tex]
Therefore, applying the sine angle identity, we get:
[tex]\[ \sin 241^\circ = \sin (180^\circ + 61^\circ) = -\sin 61^\circ \][/tex]
Given that:
[tex]\[ \sin 61^\circ = \sqrt{p} \][/tex]
We substitute this value into our equation:
[tex]\[ \sin 241^\circ = -\sqrt{p} \][/tex]
Therefore, the correct answer is:
[tex]\[ \sin 241^\circ = -\sqrt{p} \][/tex]
The answer is:
[tex]\[ \boxed{-\sqrt{p}} \][/tex]
We know that:
[tex]\[ \sin 61^\circ = \sqrt{p} \][/tex]
We need to find:
[tex]\[ \sin 241^\circ \][/tex]
We can use the sine angle identity for angles greater than 180 degrees:
[tex]\[ \sin (180^\circ + \theta) = -\sin \theta \][/tex]
Here, we notice that:
[tex]\[ 241^\circ = 180^\circ + 61^\circ \][/tex]
Therefore, applying the sine angle identity, we get:
[tex]\[ \sin 241^\circ = \sin (180^\circ + 61^\circ) = -\sin 61^\circ \][/tex]
Given that:
[tex]\[ \sin 61^\circ = \sqrt{p} \][/tex]
We substitute this value into our equation:
[tex]\[ \sin 241^\circ = -\sqrt{p} \][/tex]
Therefore, the correct answer is:
[tex]\[ \sin 241^\circ = -\sqrt{p} \][/tex]
The answer is:
[tex]\[ \boxed{-\sqrt{p}} \][/tex]