If [tex]\sin 61^{\circ}=\sqrt{p}[/tex], determine the following in terms of [tex]p[/tex]:

[tex]\sin 241^{\circ}[/tex]

A. [tex]-\sqrt{p}[/tex]

B. [tex]-\sqrt{-p}[/tex]

C. [tex]\sqrt{p}[/tex]

D. [tex]\sqrt{-p}[/tex]



Answer :

Certainly! Let’s solve this problem step-by-step.

We know that:
[tex]\[ \sin 61^\circ = \sqrt{p} \][/tex]

We need to find:
[tex]\[ \sin 241^\circ \][/tex]

We can use the sine angle identity for angles greater than 180 degrees:
[tex]\[ \sin (180^\circ + \theta) = -\sin \theta \][/tex]

Here, we notice that:
[tex]\[ 241^\circ = 180^\circ + 61^\circ \][/tex]

Therefore, applying the sine angle identity, we get:
[tex]\[ \sin 241^\circ = \sin (180^\circ + 61^\circ) = -\sin 61^\circ \][/tex]

Given that:
[tex]\[ \sin 61^\circ = \sqrt{p} \][/tex]

We substitute this value into our equation:
[tex]\[ \sin 241^\circ = -\sqrt{p} \][/tex]

Therefore, the correct answer is:
[tex]\[ \sin 241^\circ = -\sqrt{p} \][/tex]

The answer is:
[tex]\[ \boxed{-\sqrt{p}} \][/tex]