Answer :
To determine if the given sets of side lengths form a right triangle with the angle [tex]\( A \)[/tex] opposite side [tex]\( a \)[/tex] and hypotenuse [tex]\( c \)[/tex], we use the trigonometric relationship involving the cosine of the angle. Specifically, the cosine of an angle [tex]\( A \)[/tex] in a right triangle is given by:
[tex]\[ \cos(A) = \frac{a}{c} \][/tex]
We know the angle [tex]\( A \)[/tex] is given as [tex]\( \frac{0.5}{12} \)[/tex].
1. Calculate the cosine of angle [tex]\( A \)[/tex]:
[tex]\[ \cos(A) = \frac{0.5}{12} \approx 0.04166667 \][/tex]
Now, we will verify each pair of provided values ([tex]\( a \)[/tex] and [tex]\( c \)[/tex]) to see if they yield the same cosine value.
### Case 1: [tex]\( a = 2 \)[/tex], [tex]\( c = 6 \)[/tex]
[tex]\[ \cos(A) = \frac{2}{6} = \frac{1}{3} \approx 0.333333 \][/tex]
This does not equal [tex]\( 0.04166667 \)[/tex].
### Case 2: [tex]\( a = 2.5 \)[/tex], [tex]\( c = 6.5 \)[/tex]
[tex]\[ \cos(A) = \frac{2.5}{6.5} \approx 0.384615 \][/tex]
This does not equal [tex]\( 0.04166667 \)[/tex].
### Case 3: [tex]\( a = 3 \)[/tex], [tex]\( c = 7 \)[/tex]
[tex]\[ \cos(A) = \frac{3}{7} \approx 0.428571 \][/tex]
This does not equal [tex]\( 0.04166667 \)[/tex].
### Case 4: [tex]\( a = 6.5 \)[/tex], [tex]\( c = 2.5 \)[/tex]
[tex]\[ \cos(A) = \frac{6.5}{2.5} = 2.6 \][/tex]
This does not equal [tex]\( 0.04166667 \)[/tex].
None of these sets of values meet the given condition. Therefore, there are no pairs of [tex]\( a \)[/tex] and [tex]\( c \)[/tex] among the provided sets that form the desired angle [tex]\( A \)[/tex]. The resulting list of possible values that satisfy the given condition is:
[tex]\[ [] \][/tex]
This indicates that none of the given side length pairs make the angle [tex]\( A \)[/tex] equal to [tex]\( \frac{0.5}{12} \)[/tex].
[tex]\[ \cos(A) = \frac{a}{c} \][/tex]
We know the angle [tex]\( A \)[/tex] is given as [tex]\( \frac{0.5}{12} \)[/tex].
1. Calculate the cosine of angle [tex]\( A \)[/tex]:
[tex]\[ \cos(A) = \frac{0.5}{12} \approx 0.04166667 \][/tex]
Now, we will verify each pair of provided values ([tex]\( a \)[/tex] and [tex]\( c \)[/tex]) to see if they yield the same cosine value.
### Case 1: [tex]\( a = 2 \)[/tex], [tex]\( c = 6 \)[/tex]
[tex]\[ \cos(A) = \frac{2}{6} = \frac{1}{3} \approx 0.333333 \][/tex]
This does not equal [tex]\( 0.04166667 \)[/tex].
### Case 2: [tex]\( a = 2.5 \)[/tex], [tex]\( c = 6.5 \)[/tex]
[tex]\[ \cos(A) = \frac{2.5}{6.5} \approx 0.384615 \][/tex]
This does not equal [tex]\( 0.04166667 \)[/tex].
### Case 3: [tex]\( a = 3 \)[/tex], [tex]\( c = 7 \)[/tex]
[tex]\[ \cos(A) = \frac{3}{7} \approx 0.428571 \][/tex]
This does not equal [tex]\( 0.04166667 \)[/tex].
### Case 4: [tex]\( a = 6.5 \)[/tex], [tex]\( c = 2.5 \)[/tex]
[tex]\[ \cos(A) = \frac{6.5}{2.5} = 2.6 \][/tex]
This does not equal [tex]\( 0.04166667 \)[/tex].
None of these sets of values meet the given condition. Therefore, there are no pairs of [tex]\( a \)[/tex] and [tex]\( c \)[/tex] among the provided sets that form the desired angle [tex]\( A \)[/tex]. The resulting list of possible values that satisfy the given condition is:
[tex]\[ [] \][/tex]
This indicates that none of the given side length pairs make the angle [tex]\( A \)[/tex] equal to [tex]\( \frac{0.5}{12} \)[/tex].