Combine like terms to create an equivalent expression.

Enter any coefficients as simplified proper or improper fractions or integers.

[tex]-\frac{4}{7}p + \left(-\frac{2}{7}p\right) + \frac{1}{7}[/tex]



Answer :

To combine the like terms in the expression [tex]\(-\frac{4}{7} p + \left(-\frac{2}{7} p\right) + \frac{1}{7}\)[/tex], let's proceed step by step:

1. Identify and Combine Like Terms:
- The terms involving [tex]\(p\)[/tex] are [tex]\(-\frac{4}{7} p\)[/tex] and [tex]\(-\frac{2}{7} p\)[/tex].
- The constant term is [tex]\(\frac{1}{7}\)[/tex].

2. Combine the Coefficients of [tex]\(p\)[/tex]:
- The coefficients of [tex]\(p\)[/tex] are [tex]\(-\frac{4}{7}\)[/tex] and [tex]\(-\frac{2}{7}\)[/tex].
- Adding these coefficients:
[tex]\[ -\frac{4}{7} + (-\frac{2}{7}) = -\frac{4}{7} - \frac{2}{7} = -\frac{6}{7} \][/tex]
Therefore, the combined coefficient of [tex]\(p\)[/tex] is [tex]\(-\frac{6}{7}\)[/tex].

3. Combine the Like Terms in the Expression:
- After combining the like terms, the expression becomes:
[tex]\[ -\frac{6}{7} p + \frac{1}{7} \][/tex]

4. Write the Final Equivalent Expression:
- The equivalent expression after combining like terms is:
[tex]\[ -\frac{6}{7} p + \frac{1}{7} \][/tex]

Summary:
- The coefficient of [tex]\(p\)[/tex] is [tex]\(-\frac{6}{7}\)[/tex].
- The constant term remains [tex]\(\frac{1}{7}\)[/tex].
- The final combined expression is:
[tex]\[ -\frac{6}{7} p + \frac{1}{7} \][/tex]