Apply the distributive property to factor out the greatest common factor of all three terms.

[tex]\[ 9 - 12x + 6y = \square \][/tex]



Answer :

To factor out the greatest common factor (GCF) of the expression [tex]\( 9 - 12x + 6y \)[/tex], we follow these steps:

1. Identify the GCF:
- The terms in the expression are [tex]\(9\)[/tex], [tex]\(-12x\)[/tex], and [tex]\(6y\)[/tex].
- The numerical coefficients are [tex]\(9\)[/tex], [tex]\(-12\)[/tex], and [tex]\(6\)[/tex].
- First, determine the GCF of these numerical coefficients:
- The prime factors of [tex]\(9\)[/tex] are [tex]\(3 \times 3\)[/tex].
- The prime factors of [tex]\(-12\)[/tex] are [tex]\(-1 \times 2 \times 2 \times 3\)[/tex].
- The prime factors of [tex]\(6\)[/tex] are [tex]\(2 \times 3\)[/tex].
- The common factor among the numerical coefficients is [tex]\(3\)[/tex].

2. Factor out the GCF:
- Since the GCF of the coefficients is [tex]\(3\)[/tex], we factor [tex]\(3\)[/tex] out of each term in the expression:
[tex]\[ 9 \div 3 = 3 \][/tex]
[tex]\[ -12x \div 3 = -4x \][/tex]
[tex]\[ 6y \div 3 = 2y \][/tex]

3. Rewrite the expression:
- Factor [tex]\(3\)[/tex] out of the entire expression:
[tex]\[ 9 - 12x + 6y = 3 \times 3 - 3 \times 4x + 3 \times 2y \][/tex]

4. Simplify:
- Combine terms within the parentheses to get the final factored form:
[tex]\[ 9 - 12x + 6y = 3(3 - 4x + 2y) \][/tex]

Therefore, the expression [tex]\( 9 - 12x + 6y \)[/tex] factored by applying the distributive property and factoring out the greatest common factor is:
[tex]\[ 3(3 - 4x + 2y) \][/tex]