To the nearest degree, what is the measure of each exterior angle of a regular heptagon?

A. [tex]$45^{\circ}$[/tex]
B. [tex]$60^{\circ}$[/tex]
C. [tex]$51^{\circ}$[/tex]
D. [tex]$30^{\circ}$[/tex]



Answer :

To determine the measure of each exterior angle of a regular heptagon, we can follow these steps:

1. Understand the properties of a heptagon:
- A heptagon is a seven-sided polygon.

2. Formula for the exterior angle:
- The measure of each exterior angle of a regular polygon with [tex]\( n \)[/tex] sides is given by the formula:
[tex]\[ \text{Exterior angle} = \frac{360^\circ}{n} \][/tex]
- For a heptagon, [tex]\( n = 7 \)[/tex].

3. Calculate the exterior angle:
- Substitute [tex]\( n = 7 \)[/tex] into the formula:
[tex]\[ \text{Exterior angle} = \frac{360^\circ}{7} \][/tex]
- By performing the division, we get:
[tex]\[ \text{Exterior angle} \approx 51.42857142857143^\circ \][/tex]

4. Rounding to the nearest degree:
- When we round [tex]\( 51.42857142857143^\circ \)[/tex] to the nearest whole number, we get [tex]\( 51^\circ \)[/tex].

So, to the nearest degree, the measure of each exterior angle of a regular heptagon is [tex]\( 51^\circ \)[/tex].

Therefore, the correct answer is [tex]\( \boxed{51^\circ} \)[/tex].