Answer :

Answer:

S₁₀ = 270

Step-by-step explanation:

The sum to n terms of an arithmetic sequence is

• [tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex] [ 2a₁ + (n - 1)d ]

a₁ is the first term, d the common difference, n the term position

here a₁ = 9 , d = a₂ - a₁ = 13 - 9 = 4 , n = 10 , then

S₁₀ = [tex]\frac{10}{2}[/tex] [ (2 × 9) + (9 × 4) ]

     = 5(18 + 36)

      = 5 × 54

     = 270

Answer:

270

Step-by-step explanation:

9,13,17,21,....

in this AP

d(common difference)=13-9=17-13=...

d=4

a(first term)=9

n(no.of terms)=10

we know that,

Sn=n/2(2a + (n-1)d)

S10 = 10/2(2×9 + (10-1)4)

=5(18+36)

= 5(54)

=270

so sum of first 10 terms of the AP 9, 13 , 17, 21....

is 270