Select the correct answer.

A linear function has a [tex]\( y \)[/tex]-intercept of -12 and a slope of [tex]\( \frac{3}{2} \)[/tex]. What is the equation of the line?

A. [tex]\( y = \frac{3}{2} x - 12 \)[/tex]

B. [tex]\( y = \frac{3}{2} x + 12 \)[/tex]

C. [tex]\( y = \frac{2}{3} x - 12 \)[/tex]

D. [tex]\( y = -12 x - \frac{3}{2} \)[/tex]



Answer :

To determine the equation of a linear function given a [tex]$y$[/tex]-intercept and a slope, we use the general form of a linear equation:

[tex]\[ y = mx + b \][/tex]

Here, [tex]\( m \)[/tex] represents the slope and [tex]\( b \)[/tex] represents the y-intercept.

Given:
- The y-intercept ([tex]\( b \)[/tex]) is -12.
- The slope ([tex]\( m \)[/tex]) is [tex]\( \frac{3}{2} \)[/tex].

Substituting the given values into the general form, we get:

[tex]\[ y = \frac{3}{2}x - 12 \][/tex]

Thus, the correct equation of the line is:

A. [tex]\( y = \frac{3}{2}x - 12 \)[/tex]