Select the correct answer from each drop-down menu.

Consider this product:
[tex]\[ \frac{x^2 - 3x - 10}{x^2 - 6x + 5} \cdot \frac{x - 2}{x - 5} \][/tex]

The simplest form of this product has a numerator of [tex]\(\square\)[/tex] and a denominator of [tex]\(\square\)[/tex]. The expression has an excluded value of [tex]\( x = \square \)[/tex].



Answer :

To simplify the given product of fractions:

[tex]\[ \frac{x^2 - 3x - 10}{x^2 - 6x + 5} \cdot \frac{x - 2}{x - 5} \][/tex]

we need to go through the following steps:

1. Factor the expressions in the fractions:

- Factor the numerator [tex]\( x^2 - 3x - 10 \)[/tex]:
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) \][/tex]

- Factor the denominator [tex]\( x^2 - 6x + 5 \)[/tex]:
[tex]\[ x^2 - 6x + 5 = (x - 1)(x - 5) \][/tex]

- The second fraction has straightforward expressions [tex]\( \frac{x - 2}{x - 5} \)[/tex].

2. Rewrite the fractions with the factored expressions:

[tex]\[ \frac{(x - 5)(x + 2)}{(x - 1)(x - 5)} \cdot \frac{x - 2}{x - 5} \][/tex]

3. Multiply the fractions:

- Combine the numerators:
[tex]\[ \text{Numerator} = (x - 5)(x + 2) \cdot (x - 2) \][/tex]

- Combine the denominators:
[tex]\[ \text{Denominator} = (x - 1)(x - 5) \cdot (x - 5) \][/tex]

4. Simplify the expressions by canceling common factors:

- The numerator [tex]\( (x - 5)(x + 2)(x - 2) \)[/tex] remains as it is.
- The denominator can be simplified:
[tex]\[ (x - 5)(x - 5)(x - 1) = (x - 5)^2(x - 1) \][/tex]

5. Simplified products:

The simplest form of the numerator:
[tex]\[ -(x - 2)(-x^2 + 3x + 10) \][/tex]

The simplest form of the denominator:
[tex]\[ (x - 5)(x^2 - 6x + 5) \][/tex]

6. Determine the excluded values:

The excluded values are where the denominator equals zero:
[tex]\[ (x - 1)(x - 5) = 0 \][/tex]
[tex]\[ x - 1 = 0 \quad \text{or} \quad x - 5 = 0 \][/tex]
Excluded values:
[tex]\[ x = 1 \quad \text{and} \quad x = 5 \][/tex]

So, the answers are:
- The numerator in its simplest form is [tex]\(-(x - 2)(-x^2 + 3x + 10)\)[/tex].
- The denominator in its simplest form is [tex]\((x - 5)(x^2 - 6x + 5)\)[/tex].
- The excluded values are [tex]\(x = 1\)[/tex] and [tex]\(x = 5\)[/tex].

Other Questions