Answer :
Let's examine the two tables to determine their respective rates of change.
### First table
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
To find the rate of change, use the formula:
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} \][/tex]
Take two points: [tex]\((20, -1)\)[/tex] and [tex]\((21, -1.5)\)[/tex]:
[tex]\[ \Delta y = -1.5 - (-1) = -1.5 + 1 = -0.5 \][/tex]
[tex]\[ \Delta x = 21 - 20 = 1 \][/tex]
[tex]\[ \text{Rate of change} = \frac{-0.5}{1} = -0.5 \][/tex]
### Second table
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
Again, use the formula for the rate of change:
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} \][/tex]
Take two points: [tex]\((-12, 7)\)[/tex] and [tex]\((-11, 11)\)[/tex]:
[tex]\[ \Delta y = 11 - 7 = 4 \][/tex]
[tex]\[ \Delta x = -11 - (-12) = -11 + 12 = 1 \][/tex]
[tex]\[ \text{Rate of change} = \frac{4}{1} = 4 \][/tex]
### Comparing Rates of Change
- The rate of change for the first table is [tex]\(-0.5\)[/tex].
- The rate of change for the second table is [tex]\(4.0\)[/tex].
To find which function has a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex], compare the given constant rate with the computed rates:
- The first table has a rate of change of [tex]\(-0.5\)[/tex].
- The second table has a rate of change of [tex]\(4.0\)[/tex].
Neither [tex]\(-0.5\)[/tex] nor [tex]\(4.0\)[/tex] match the constant rate of [tex]\(-\frac{1}{4}\)[/tex]. Therefore, neither of the given tables has a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex].
### First table
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
To find the rate of change, use the formula:
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} \][/tex]
Take two points: [tex]\((20, -1)\)[/tex] and [tex]\((21, -1.5)\)[/tex]:
[tex]\[ \Delta y = -1.5 - (-1) = -1.5 + 1 = -0.5 \][/tex]
[tex]\[ \Delta x = 21 - 20 = 1 \][/tex]
[tex]\[ \text{Rate of change} = \frac{-0.5}{1} = -0.5 \][/tex]
### Second table
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
Again, use the formula for the rate of change:
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} \][/tex]
Take two points: [tex]\((-12, 7)\)[/tex] and [tex]\((-11, 11)\)[/tex]:
[tex]\[ \Delta y = 11 - 7 = 4 \][/tex]
[tex]\[ \Delta x = -11 - (-12) = -11 + 12 = 1 \][/tex]
[tex]\[ \text{Rate of change} = \frac{4}{1} = 4 \][/tex]
### Comparing Rates of Change
- The rate of change for the first table is [tex]\(-0.5\)[/tex].
- The rate of change for the second table is [tex]\(4.0\)[/tex].
To find which function has a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex], compare the given constant rate with the computed rates:
- The first table has a rate of change of [tex]\(-0.5\)[/tex].
- The second table has a rate of change of [tex]\(4.0\)[/tex].
Neither [tex]\(-0.5\)[/tex] nor [tex]\(4.0\)[/tex] match the constant rate of [tex]\(-\frac{1}{4}\)[/tex]. Therefore, neither of the given tables has a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex].