On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex][tex]$C(76.1)$[/tex][/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit



Answer :

To find the value of [tex]\( C(76.1) \)[/tex], we will use the formula for converting temperatures from degrees Fahrenheit to degrees Celsius:

[tex]\[ C(F) = \frac{5}{9} (F - 32) \][/tex]

Given that Kareem found the high temperature to be [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit, we can substitute [tex]\( F = 76.1 \)[/tex] into the formula to find the corresponding temperature in degrees Celsius.

First, we will subtract 32 from the Fahrenheit temperature:

[tex]\[ 76.1 - 32 = 44.1 \][/tex]

Next, we multiply this result by [tex]\(\frac{5}{9}\)[/tex]:

[tex]\[ \frac{5}{9} \times 44.1 \][/tex]

This calculation gives the result:

[tex]\[ C(76.1) = 24.499999999999996 \][/tex]

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

Hence, the correct interpretation is:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.