Answer :
Sure! Let's solve the expression step-by-step:
Given expression:
[tex]\[ 6 + 4 \times \left( 14 - 2^2 - 3 \right) - 26 \div 2 \][/tex]
### Step 1: Evaluate the exponentiation
First, let's evaluate the exponentiation inside the parentheses:
[tex]\[ 2^2 = 4 \][/tex]
### Step 2: Simplify the terms inside the parentheses
Now, we update the expression:
[tex]\[ 14 - 4 - 3 \][/tex]
Assuming a slight clarification in the notation here, we'll simplify it as:
[tex]\[ 14 - 4 - 3 = 7 \][/tex]
### Step 3: Multiply the result inside the parentheses by 4
Next, we multiply the result (7) by 4:
[tex]\[ 4 \times 7 = 28 \][/tex]
### Step 4: Divide 26 by 2
Now, let's perform the division operation:
[tex]\[ 26 \div 2 = 13 \][/tex]
### Step 5: Calculate the final expression
Finally, we substitute all our computed values back into the original expression, and simplify step-by-step:
[tex]\[ 6 + 28 - 13 \][/tex]
Then:
[tex]\[ 6 + 28 = 34 \][/tex]
And:
[tex]\[ 34 - 13 = 21 \][/tex]
So, the final result is:
[tex]\[ \boxed{21} \][/tex]
Given expression:
[tex]\[ 6 + 4 \times \left( 14 - 2^2 - 3 \right) - 26 \div 2 \][/tex]
### Step 1: Evaluate the exponentiation
First, let's evaluate the exponentiation inside the parentheses:
[tex]\[ 2^2 = 4 \][/tex]
### Step 2: Simplify the terms inside the parentheses
Now, we update the expression:
[tex]\[ 14 - 4 - 3 \][/tex]
Assuming a slight clarification in the notation here, we'll simplify it as:
[tex]\[ 14 - 4 - 3 = 7 \][/tex]
### Step 3: Multiply the result inside the parentheses by 4
Next, we multiply the result (7) by 4:
[tex]\[ 4 \times 7 = 28 \][/tex]
### Step 4: Divide 26 by 2
Now, let's perform the division operation:
[tex]\[ 26 \div 2 = 13 \][/tex]
### Step 5: Calculate the final expression
Finally, we substitute all our computed values back into the original expression, and simplify step-by-step:
[tex]\[ 6 + 28 - 13 \][/tex]
Then:
[tex]\[ 6 + 28 = 34 \][/tex]
And:
[tex]\[ 34 - 13 = 21 \][/tex]
So, the final result is:
[tex]\[ \boxed{21} \][/tex]