Find [tex]\( t \)[/tex]:

[tex]\[
\frac{1}{4}(10)^{2t}=5
\][/tex]

Round your answer to the nearest hundredth.

A. 0.05

B. 0.19

C. 0.65



Answer :

To find the value of [tex]\( t \)[/tex] in the given equation [tex]\( \frac{1}{4}(10)^{2t} = 5 \)[/tex], follow these steps:

1. Isolate the Exponential Term:

Start by isolating the exponential term [tex]\((10)^{2t}\)[/tex]. To do this, multiply both sides of the equation by 4:
[tex]\[ 4 \cdot \frac{1}{4}(10)^{2t} = 5 \cdot 4 \][/tex]
Simplifying the left side, we get:
[tex]\[ (10)^{2t} = 20 \][/tex]

2. Apply the Logarithm:

Apply the logarithm on both sides of the equation. Common logarithms (base 10) are typically used for problems involving base 10 exponentials:
[tex]\[ \log_{10}((10)^{2t}) = \log_{10}(20) \][/tex]

Using the property of logarithms [tex]\(\log_{10}(a^b) = b \cdot \log_{10}(a)\)[/tex], we can simplify the left side:
[tex]\[ 2t \cdot \log_{10}(10) = \log_{10}(20) \][/tex]

3. Simplify the Equation:

Since [tex]\(\log_{10}(10) = 1\)[/tex], the equation simplifies further:
[tex]\[ 2t \cdot 1 = \log_{10}(20) \][/tex]
[tex]\[ 2t = \log_{10}(20) \][/tex]

4. Solve for [tex]\( t \)[/tex]:
To solve for [tex]\( t \)[/tex], divide both sides by 2:
[tex]\[ t = \frac{\log_{10}(20)}{2} \][/tex]

5. Numerical Value:

Use a calculator to find the logarithm value:
[tex]\[ \log_{10}(20) \approx 1.30103 \][/tex]
Divide this value by 2:
[tex]\[ t = \frac{1.30103}{2} \approx 0.6505149978319906 \][/tex]

6. Rounding:

Round the answer to the nearest hundredth:
[tex]\[ t \approx 0.65 \][/tex]

Therefore, the value of [tex]\( t \)[/tex] rounded to the nearest hundredth is:
[tex]\[ \boxed{0.65} \][/tex]