Answer :
Let's start by addressing the relationship given in part (b) of the problem:
We are given the equation [tex]\( y = 5x + 7 \)[/tex] and a set of values for [tex]\( x \)[/tex]. The task is to find the corresponding values of [tex]\( y \)[/tex] for each given [tex]\( x \)[/tex].
The values of [tex]\( x \)[/tex] provided are [tex]\( 0, 1, 2, 3, 4, 5, \)[/tex] and [tex]\( 6 \)[/tex].
Let's calculate [tex]\( y \)[/tex] for each value of [tex]\( x \)[/tex] step-by-step:
1. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 5(0) + 7 = 0 + 7 = 7 \][/tex]
2. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 5(1) + 7 = 5 + 7 = 12 \][/tex]
3. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 5(2) + 7 = 10 + 7 = 17 \][/tex]
4. For [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 5(3) + 7 = 15 + 7 = 22 \][/tex]
5. For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 5(4) + 7 = 20 + 7 = 27 \][/tex]
6. For [tex]\( x = 5 \)[/tex]:
[tex]\[ y = 5(5) + 7 = 25 + 7 = 32 \][/tex]
7. For [tex]\( x = 6 \)[/tex]:
[tex]\[ y = 5(6) + 7 = 30 + 7 = 37 \][/tex]
Now, let's compile the results into a table for better clarity:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 7 \\ 1 & 12 \\ 2 & 17 \\ 3 & 22 \\ 4 & 27 \\ 5 & 32 \\ 6 & 37 \\ \hline \end{array} \][/tex]
So, the table representing the values of [tex]\( y \)[/tex] corresponding to each given value of [tex]\( x \)[/tex] according to the equation [tex]\( y = 5x + 7 \)[/tex] is complete and correct.
We are given the equation [tex]\( y = 5x + 7 \)[/tex] and a set of values for [tex]\( x \)[/tex]. The task is to find the corresponding values of [tex]\( y \)[/tex] for each given [tex]\( x \)[/tex].
The values of [tex]\( x \)[/tex] provided are [tex]\( 0, 1, 2, 3, 4, 5, \)[/tex] and [tex]\( 6 \)[/tex].
Let's calculate [tex]\( y \)[/tex] for each value of [tex]\( x \)[/tex] step-by-step:
1. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 5(0) + 7 = 0 + 7 = 7 \][/tex]
2. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 5(1) + 7 = 5 + 7 = 12 \][/tex]
3. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 5(2) + 7 = 10 + 7 = 17 \][/tex]
4. For [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 5(3) + 7 = 15 + 7 = 22 \][/tex]
5. For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 5(4) + 7 = 20 + 7 = 27 \][/tex]
6. For [tex]\( x = 5 \)[/tex]:
[tex]\[ y = 5(5) + 7 = 25 + 7 = 32 \][/tex]
7. For [tex]\( x = 6 \)[/tex]:
[tex]\[ y = 5(6) + 7 = 30 + 7 = 37 \][/tex]
Now, let's compile the results into a table for better clarity:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 7 \\ 1 & 12 \\ 2 & 17 \\ 3 & 22 \\ 4 & 27 \\ 5 & 32 \\ 6 & 37 \\ \hline \end{array} \][/tex]
So, the table representing the values of [tex]\( y \)[/tex] corresponding to each given value of [tex]\( x \)[/tex] according to the equation [tex]\( y = 5x + 7 \)[/tex] is complete and correct.