Simplify: [tex]\frac{9 x^{38}}{6\left(x^6\right)^3 x}[/tex]

A. [tex]\frac{3}{2} x^{20}[/tex]
B. [tex]\frac{3}{2} x^{28}[/tex]
C. [tex]\frac{3}{2} x^{19}[/tex]
D. [tex]\frac{3}{2} x^2[/tex]



Answer :

To solve the expression [tex]\(\frac{9 x^{38}}{6\left(x^6\right)^3 x}\)[/tex], we'll simplify it step-by-step.

1. Simplify the denominator:
[tex]\[ 6\left(x^6\right)^3 x \][/tex]
We need to simplify [tex]\( (x^6)^3 \)[/tex]:
[tex]\[ (x^6)^3 = x^{6 \cdot 3} = x^{18} \][/tex]

So the denominator becomes:
[tex]\[ 6x^{18}x = 6x^{18+1} = 6x^{19} \][/tex]

2. Write the whole fraction:
[tex]\[ \frac{9 x^{38}}{6 x^{19}} \][/tex]

3. Simplify the fraction of constants:
[tex]\[ \frac{9}{6} = \frac{3}{2} \][/tex]

4. Simplify the exponents of [tex]\(x\)[/tex]:
Using the rule [tex]\(\frac{x^a}{x^b} = x^{a-b}\)[/tex], we simplify the exponents:
[tex]\[ \frac{x^{38}}{x^{19}} = x^{38-19} = x^{19} \][/tex]

5. Combine the simplified constants and exponents:
[tex]\[ \frac{3}{2} x^{19} \][/tex]

Therefore, the simplified expression is:
[tex]\[ \boxed{\frac{3}{2} x^{19}} \][/tex]