Answer :

Sure! Let's solve the equation [tex]$\log_3(3z + 4) - \log_3 z = 2$[/tex] step-by-step.

1. Use the logarithmic property: Recall that the difference of logarithms can be written as the logarithm of a quotient:
[tex]\[ \log_3(3z + 4) - \log_3 z = \log_3 \left( \frac{3z + 4}{z} \right) \][/tex]

2. Set up the new logarithmic equation: Substitute the quotient into the logarithmic function:
[tex]\[ \log_3 \left( \frac{3z + 4}{z} \right) = 2 \][/tex]

3. Convert the logarithmic equation to an exponential equation: Remember that if [tex]$\log_b(x) = y$[/tex], then [tex]$b^y = x$[/tex]. Here, [tex]$b = 3$[/tex] and [tex]$y = 2$[/tex], so:
[tex]\[ \frac{3z + 4}{z} = 3^2 \][/tex]

4. Simplify the exponential equation: Calculate the right-hand side of the equation:
[tex]\[ \frac{3z + 4}{z} = 9 \][/tex]

5. Isolate z: Start by multiplying both sides of the equation by [tex]$z$[/tex]:
[tex]\[ 3z + 4 = 9z \][/tex]

6. Solve for z: Rearrange the equation to isolate [tex]$z$[/tex] on one side:
[tex]\[ 3z + 4 - 9z = 0 \][/tex]
[tex]\[ -6z + 4 = 0 \][/tex]
[tex]\[ -6z = -4 \][/tex]
[tex]\[ z = \frac{-4}{-6} \][/tex]
Simplify the fraction:
[tex]\[ z = \frac{2}{3} \][/tex]

So, the value of [tex]$z$[/tex] that satisfies the equation [tex]$\log_3(3z + 4) - \log_3 z = 2$[/tex] is [tex]$\boxed{\frac{2}{3}}$[/tex].