Given: [tex]x - 5 \ \textgreater \ -2[/tex].

Choose the solution set.

A. [tex]\{x \mid x \in \mathbb{R}, x \ \textgreater \ 3\}[/tex]

B. [tex]\{x \mid x \in \mathbb{R}, x \ \textgreater \ -3\}[/tex]

C. [tex]\{x \mid x \in \mathbb{R}, x \ \textgreater \ -7\}[/tex]

D. [tex]\{x \mid x \in \mathbb{R}, x \ \textgreater \ 7\}[/tex]



Answer :

Let's solve the given inequality step by step.

We start with the inequality:
[tex]\[ x - 5 > -2 \][/tex]

To isolate [tex]\( x \)[/tex], we need to remove the constant term on the left side of the inequality. We do this by adding 5 to both sides of the inequality.

[tex]\[ x - 5 + 5 > -2 + 5 \][/tex]

Simplify both sides:
[tex]\[ x > 3 \][/tex]

The solution set of the inequality [tex]\( x > 3 \)[/tex] in set-builder notation is:

[tex]\[ \{x \mid x \in \mathbb{R}, x > 3\} \][/tex]

Among the given options, the correct solution set is:
[tex]\[ \{x \mid x \in R, x > 3\} \][/tex]

Therefore, the correct choice is:

[tex]\[ \{x \mid x \in R, x > 3\} \][/tex]