Which of the following represents [tex]$6 x^{\frac{3}{4}}$[/tex] in radical form?

A. [tex]$6 \sqrt[4]{x^3}$[/tex]
B. [tex][tex]$6 \sqrt[3]{x^4}$[/tex][/tex]
C. [tex]$\sqrt[3]{6 x^4}$[/tex]
D. [tex]$\sqrt[4]{6 x^3}$[/tex]



Answer :

To represent [tex]\( 6x^{\frac{3}{4}} \)[/tex] in radical form, let's break it down step by step:

1. Understand the exponent [tex]\( \frac{3}{4} \)[/tex] associated with [tex]\( x \)[/tex]:
- The exponent [tex]\( \frac{3}{4} \)[/tex] means [tex]\( x \)[/tex] raised to the power of 3, and then taking the 4th root of the result. This can be written as:
[tex]\[ x^{\frac{3}{4}} = (x^3)^{\frac{1}{4}} \][/tex]

2. Convert [tex]\( x^{\frac{3}{4}} \)[/tex] to its radical form:
- The notation [tex]\( (x^3)^{\frac{1}{4}} \)[/tex] is the same as taking the 4th root of [tex]\( x^3 \)[/tex]. In radical form, this is written as:
[tex]\[ \sqrt[4]{x^3} \][/tex]

3. Incorporate the constant multiplying the expression:
- The original expression is [tex]\( 6x^{\frac{3}{4}} \)[/tex], so we need to include the constant 6 in our radical form:
[tex]\[ 6 \cdot \sqrt[4]{x^3} \][/tex]

4. Match the derived expression with the given options:
- Comparing [tex]\( 6 \cdot \sqrt[4]{x^3} \)[/tex] with the provided choices, we find that this matches with:
[tex]\[ 6 \sqrt[4]{x^3} \][/tex]

Therefore, the correct representation of [tex]\( 6x^{\frac{3}{4}} \)[/tex] in radical form is:
[tex]\[ 6 \sqrt[4]{x^3} \][/tex]

So, the answer is [tex]\(\boxed{1}\)[/tex].