Which of the following is the simplified form of [tex]\frac{18 x^2-12 x+6}{3 x}[/tex]?

A. [tex]6 x^2-4 x+2[/tex]
B. [tex]6 x^3-4 x^2+2 x[/tex]
C. [tex]6 x-2[/tex]
D. [tex]6 x-4+\frac{2}{x}[/tex]



Answer :

To simplify the expression [tex]\(\frac{18 x^2 - 12 x + 6}{3 x}\)[/tex], follow these steps:

1. Separate the Terms:
Split the numerator into separate terms over the common denominator [tex]\(3x\)[/tex]:
[tex]\[ \frac{18 x^2}{3 x} - \frac{12 x}{3 x} + \frac{6}{3 x} \][/tex]

2. Simplify Each Term Individually:

- For the first term:
[tex]\[ \frac{18 x^2}{3 x} = \frac{18}{3} \cdot \frac{x^2}{x} = 6 x \][/tex]

- For the second term:
[tex]\[ \frac{12 x}{3 x} = \frac{12}{3} \cdot \frac{x}{x} = 4 \][/tex]

- For the third term:
[tex]\[ \frac{6}{3 x} = \frac{6}{3} \cdot \frac{1}{x} = 2 \cdot \frac{1}{x} = \frac{2}{x} \][/tex]

3. Combine the Simplified Terms:

Bring together all the simplified terms:
[tex]\[ 6 x - 4 + \frac{2}{x} \][/tex]

Thus, the simplified form of the expression [tex]\(\frac{18 x^2 - 12 x + 6}{3 x}\)[/tex] is:
[tex]\[ 6 x - 4 + \frac{2}{x} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{6 x - 4 + \frac{2}{x}} \][/tex]