Let's solve the question step-by-step.
First, let's determine the absolute values of the given numbers:
1. The absolute value of [tex]\(-6\)[/tex] is [tex]\(6\)[/tex]. This is because the absolute value removes any negative sign from the number.
2. The absolute value of [tex]\(7\)[/tex] is [tex]\(7\)[/tex]. Since [tex]\(7\)[/tex] is already positive, its absolute value remains [tex]\(7\)[/tex].
Next, we substitute these absolute values into the given expression [tex]\(2|-6| + 3|7|\)[/tex]:
[tex]\[ 2 \cdot 6 + 3 \cdot 7 \][/tex]
Now, we perform the multiplications:
1. [tex]\(2 \cdot 6 = 12\)[/tex]
2. [tex]\(3 \cdot 7 = 21\)[/tex]
Finally, we add the results of the multiplications together:
[tex]\[ 12 + 21 = 33 \][/tex]
So, the value of [tex]\(2|-6| + 3|7|\)[/tex] is [tex]\(33\)[/tex].
Hence, the best answer is:
D. 33