Answer :
To find the determinant of the given 2x2 matrix, we can use the formula for the determinant of a 2x2 matrix. The formula is:
[tex]\[ \text{det} \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc \][/tex]
Given the matrix:
[tex]\[ \left| \begin{array}{cc} -7 & 2 \\ 4 & 5 \end{array} \right| \][/tex]
we identify the elements of the matrix as:
- [tex]\(a = -7\)[/tex],
- [tex]\(b = 2\)[/tex],
- [tex]\(c = 4\)[/tex],
- [tex]\(d = 5\)[/tex].
Using the determinant formula, we substitute these values into the expression:
[tex]\[ \text{det} \left| \begin{array}{cc} -7 & 2 \\ 4 & 5 \end{array} \right| = (-7 \times 5) - (2 \times 4) \][/tex]
Perform the multiplications inside the parentheses first:
[tex]\[ (-7 \times 5) = -35 \][/tex]
[tex]\[ (2 \times 4) = 8 \][/tex]
Next, subtract the second product from the first:
[tex]\[ -35 - 8 = -43 \][/tex]
Thus, the determinant of the given matrix is:
[tex]\[ \left|\begin{array}{cc}-7 & 2 \\ 4 & 5\end{array}\right| = -43 \][/tex]
[tex]\[ \text{det} \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc \][/tex]
Given the matrix:
[tex]\[ \left| \begin{array}{cc} -7 & 2 \\ 4 & 5 \end{array} \right| \][/tex]
we identify the elements of the matrix as:
- [tex]\(a = -7\)[/tex],
- [tex]\(b = 2\)[/tex],
- [tex]\(c = 4\)[/tex],
- [tex]\(d = 5\)[/tex].
Using the determinant formula, we substitute these values into the expression:
[tex]\[ \text{det} \left| \begin{array}{cc} -7 & 2 \\ 4 & 5 \end{array} \right| = (-7 \times 5) - (2 \times 4) \][/tex]
Perform the multiplications inside the parentheses first:
[tex]\[ (-7 \times 5) = -35 \][/tex]
[tex]\[ (2 \times 4) = 8 \][/tex]
Next, subtract the second product from the first:
[tex]\[ -35 - 8 = -43 \][/tex]
Thus, the determinant of the given matrix is:
[tex]\[ \left|\begin{array}{cc}-7 & 2 \\ 4 & 5\end{array}\right| = -43 \][/tex]