Evaluate the exponent expression for [tex]\( a = -2 \)[/tex] and [tex]\( b = 3 \)[/tex].

[tex]\[
\frac{-2 a^{-3} b^2}{a}
\][/tex]

A) [tex]\(-\frac{2}{5}\)[/tex]
B) [tex]\(3\)[/tex]
C) [tex]\(-6\)[/tex]
D) [tex]\(-\frac{9}{8}\)[/tex]



Answer :

Sure, let's solve the given expression step-by-step.

We are given the expression:

[tex]\[ \frac{-2 a^{-3} b^2}{a} \][/tex]

and we need to evaluate it for [tex]\( a = -2 \)[/tex] and [tex]\( b = 3 \)[/tex].

### Step 1: Substitute the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]

First, substitute [tex]\( a = -2 \)[/tex] and [tex]\( b = 3 \)[/tex] into the expression.

[tex]\[ \frac{-2 (-2)^{-3} (3)^2}{-2} \][/tex]

### Step 2: Simplify the exponents

Calculate each part of the expression involving an exponent.

For [tex]\( (-2)^{-3} \)[/tex]:
[tex]\[ (-2)^{-3} = \frac{1}{(-2)^3} = \frac{1}{-8} = -\frac{1}{8} \][/tex]

For [tex]\( (3)^2 \)[/tex]:
[tex]\[ (3)^2 = 9 \][/tex]

Now, the expression is simplified to:

[tex]\[ \frac{-2 \left(-\frac{1}{8}\right) (9)}{-2} \][/tex]

### Step 3: Multiply the constants and fractions

First, multiply [tex]\(-2\)[/tex], [tex]\(-\frac{1}{8}\)[/tex], and [tex]\(9\)[/tex]:

[tex]\[ -2 \times -\frac{1}{8} = \frac{2}{8} = \frac{1}{4} \][/tex]

Then:
[tex]\[ \frac{1}{4} \times 9 = \frac{9}{4} \][/tex]

So we now have:

[tex]\[ \frac{\frac{9}{4}}{-2} \][/tex]

### Step 4: Divide by [tex]\(-2\)[/tex]

To divide [tex]\(\frac{9}{4}\)[/tex] by [tex]\(-2\)[/tex], multiply by the reciprocal of [tex]\(-2\)[/tex] (which is [tex]\(-\frac{1}{2}\)[/tex]):

[tex]\[ \frac{9}{4} \times -\frac{1}{2} = -\frac{9}{8} \][/tex]

### Conclusion

Thus, the result of evaluating the expression [tex]\(\frac{-2 a^{-3} b^2}{a}\)[/tex] for [tex]\(a = -2\)[/tex] and [tex]\(b = 3\)[/tex] is:

[tex]\[ \boxed{-\frac{9}{8}} \][/tex]

So, the correct answer is option D) [tex]\(-\frac{9}{8}\)[/tex].