What is the recursive formula of the geometric sequence?

[tex]\[ \frac{1}{2}, \frac{3}{4}, \frac{9}{8}, \frac{27}{16}, \cdots \][/tex]

A) [tex]\[a_n = \left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right)^{n-1} \text{ for } n \geq 1\][/tex]

B) [tex]\[a_1 = \frac{1}{2}; \, a_n = a_{n-1} \cdot \left(\frac{3}{2}\right) \text{ for } n \geq 2\][/tex]

C) [tex]\[a_n = (2) \cdot \left(\frac{1}{2}\right)^{n-1} \text{ for } n \geq 1\][/tex]

D) [tex]\[a_1 = \frac{1}{2}; \, a_n = a_{n-1} \cdot (2) \text{ for } n \geq 2\][/tex]



Answer :

To determine the recursive formula for the given geometric sequence [tex]\( \frac{1}{2}, \frac{3}{4}, \frac{9}{8}, \frac{27}{16}, \ldots \)[/tex], we need to identify the pattern and structure of the sequence.

Observing the sequence, we see the following terms:
- 1st term: [tex]\( a_1 = \frac{1}{2} \)[/tex]
- 2nd term: [tex]\( a_2 = \frac{3}{4} \)[/tex]
- 3rd term: [tex]\( a_3 = \frac{9}{8} \)[/tex]
- 4th term: [tex]\( a_4 = \frac{27}{16} \)[/tex]

The ratio [tex]\( \frac{a_{n+1}}{a_n} \)[/tex] in a geometric sequence is constant. Let's calculate this common ratio [tex]\( r \)[/tex].

[tex]\[ r = \frac{a_2}{a_1} = \frac{\frac{3}{4}}{\frac{1}{2}} = \frac{3}{4} \times \frac{2}{1} = \frac{3 \times 2}{4} = \frac{3}{2} \][/tex]

[tex]\[ r = \frac{a_3}{a_2} = \frac{\frac{9}{8}}{\frac{3}{4}} = \frac{9}{8} \times \frac{4}{3} = \frac{9 \times 4}{8 \times 3} = \frac{36}{24} = \frac{3}{2} \][/tex]

[tex]\[ r = \frac{a_4}{a_3} = \frac{\frac{27}{16}}{\frac{9}{8}} = \frac{27}{16} \times \frac{8}{9} = \frac{27 \times 8}{16 \times 9} = \frac{216}{144} = \frac{3}{2} \][/tex]

Thus, the common ratio [tex]\( r \)[/tex] is [tex]\(\frac{3}{2}\)[/tex].

This means each term in the sequence is [tex]\(\frac{3}{2}\)[/tex] times the previous term.

To write the recursive formula:
- The first term is [tex]\( a_1 = \frac{1}{2} \)[/tex].
- Each subsequent term is produced by multiplying the previous term by [tex]\(\frac{3}{2}\)[/tex].

Thus, the recursive formula for the sequence is:
[tex]\[ a_1 = \frac{1}{2} \][/tex]
[tex]\[ a_n = a_{n-1} \cdot \frac{3}{2} \quad \text{for} \quad n \geq 2 \][/tex]

Among the given options, option B describes this recursive formula correctly:

[tex]\[ \text{B) } a_1 = \frac{1}{2} \quad ; \quad a_n = a_{n-1} \cdot \frac{3}{2} \quad \text{for} \quad n \geq 2 \][/tex]

So, the correct answer is [tex]\( \boxed{2} \)[/tex].