Answer :

Certainly! Let's find the solutions for the given system of equations:

[tex]\[ \begin{cases} 3x + y = 11 \\ x^2 - 2y = 18 \end{cases} \][/tex]

### Step 1: Solve the first equation for [tex]\( y \)[/tex]

First, let's isolate [tex]\( y \)[/tex] in the first equation:

[tex]\[ 3x + y = 11 \][/tex]

Subtract [tex]\( 3x \)[/tex] from both sides:

[tex]\[ y = 11 - 3x \][/tex]

### Step 2: Substitute [tex]\( y \)[/tex] into the second equation

Next, we substitute [tex]\( y = 11 - 3x \)[/tex] into the second equation:

[tex]\[ x^2 - 2y = 18 \][/tex]

Substitute [tex]\( y \)[/tex]:

[tex]\[ x^2 - 2(11 - 3x) = 18 \][/tex]

### Step 3: Simplify and solve for [tex]\( x \)[/tex]

Distribute and simplify the equation:

[tex]\[ x^2 - 22 + 6x = 18 \][/tex]

Combine like terms:

[tex]\[ x^2 + 6x - 40 = 0 \][/tex]

This is a quadratic equation. Now, we solve for [tex]\( x \)[/tex]:

[tex]\[ x^2 + 6x - 40 = 0 \][/tex]

Factorize the quadratic equation:

[tex]\[ (x + 10)(x - 4) = 0 \][/tex]

Set each factor to zero and solve for [tex]\( x \)[/tex]:

[tex]\[ x + 10 = 0 \quad \text{or} \quad x - 4 = 0 \][/tex]

[tex]\[ x = -10 \quad \text{or} \quad x = 4 \][/tex]

### Step 4: Solve for [tex]\( y \)[/tex] using the values of [tex]\( x \)[/tex]

Using [tex]\( x = -10 \)[/tex]:

[tex]\[ y = 11 - 3(-10) = 11 + 30 = 41 \][/tex]

Using [tex]\( x = 4 \)[/tex]:

[tex]\[ y = 11 - 3(4) = 11 - 12 = -1 \][/tex]

### Step 5: Present the solutions as ordered pairs

The solutions to the system of equations are:

[tex]\[ (-10, 41) \quad \text{and} \quad (4, -1) \][/tex]