Answer :

Sure, let's solve the equation [tex]\(\frac{3a^2 - 1}{2b} = c\)[/tex] for [tex]\(b\)[/tex]. Here is a step-by-step solution:

1. Start with the given equation:
[tex]\[ \frac{3a^2 - 1}{2b} = c \][/tex]

2. To isolate [tex]\(b\)[/tex], first eliminate the fraction by multiplying both sides of the equation by [tex]\(2b\)[/tex]:
[tex]\[ 2b \cdot \frac{3a^2 - 1}{2b} = 2b \cdot c \][/tex]

3. On the left side, the [tex]\(2b\)[/tex] in the numerator and denominator cancel out, leaving:
[tex]\[ 3a^2 - 1 = 2bc \][/tex]

4. Next, solve for [tex]\(b\)[/tex] by isolating it on one side of the equation. Divide both sides by [tex]\(2c\)[/tex]:
[tex]\[ b = \frac{3a^2 - 1}{2c} \][/tex]

Therefore, the value of [tex]\(b\)[/tex] in terms of [tex]\(a\)[/tex] and [tex]\(c\)[/tex] is:
[tex]\[ b = \frac{3a^2 - 1}{2c} \][/tex]