To find the value of the given expression [tex]\(\frac{j^3 k}{h^0}\)[/tex] where [tex]\(h = 8\)[/tex], [tex]\(j = -1\)[/tex], and [tex]\(k = -12\)[/tex], we follow these steps:
1. Evaluate [tex]\(h^0\)[/tex]:
- Any number raised to the power of 0 is 1. Hence, [tex]\(h^0 = 1\)[/tex].
2. Simplify the expression using the evaluated value:
- The expression simplifies to [tex]\(\frac{j^3 k}{1}\)[/tex] because [tex]\(h^0 = 1\)[/tex].
3. Calculate [tex]\(j^3\)[/tex]:
- [tex]\(j = -1\)[/tex]
- [tex]\((-1)^3 = -1\)[/tex]
4. Multiply [tex]\(j^3\)[/tex] by [tex]\(k\)[/tex]:
- [tex]\(k = -12\)[/tex]
- So, [tex]\((-1)^3 \cdot (-12) = -1 \cdot -12 = 12\)[/tex]
5. Simplify the final expression:
- The final expression is [tex]\(\frac{12}{1} = 12\)[/tex]
Thus, the value of the expression [tex]\(\frac{j^3 k}{h^0}\)[/tex] is [tex]\(\boxed{12}\)[/tex].
Therefore, the correct answer is:
A. 12