Answer :

To determine which expression is equal to [tex]\((2-5i)-(3+4i)\)[/tex], we need to perform the subtraction of the two complex numbers step by step.

1. Expand the Expression:
[tex]\[ (2 - 5i) - (3 + 4i) \][/tex]

2. Distribute the Negative Sign:
[tex]\[ 2 - 5i - 3 - 4i \][/tex]

3. Combine the Real Parts:
[tex]\[ 2 - 3 = -1 \][/tex]

4. Combine the Imaginary Parts:
[tex]\[ -5i - 4i = -9i \][/tex]

Therefore, the result of [tex]\((2-5i) - (3+4i)\)[/tex] is:
[tex]\[ -1 - 9i \][/tex]

Hence, the expression that is equal to [tex]\((2-5i)-(3+4i)\)[/tex] is:
[tex]\[ -1 - 9i \][/tex]

The correct option is:
[tex]\[ -1 - 9i \][/tex]