To determine which expression is equal to [tex]\((2-5i)-(3+4i)\)[/tex], we need to perform the subtraction of the two complex numbers step by step.
1. Expand the Expression:
[tex]\[
(2 - 5i) - (3 + 4i)
\][/tex]
2. Distribute the Negative Sign:
[tex]\[
2 - 5i - 3 - 4i
\][/tex]
3. Combine the Real Parts:
[tex]\[
2 - 3 = -1
\][/tex]
4. Combine the Imaginary Parts:
[tex]\[
-5i - 4i = -9i
\][/tex]
Therefore, the result of [tex]\((2-5i) - (3+4i)\)[/tex] is:
[tex]\[
-1 - 9i
\][/tex]
Hence, the expression that is equal to [tex]\((2-5i)-(3+4i)\)[/tex] is:
[tex]\[
-1 - 9i
\][/tex]
The correct option is:
[tex]\[
-1 - 9i
\][/tex]