Select the correct answer.

Rewrite the following radical expression in rational exponent form.

[tex]\[ (\sqrt{x})^5 \][/tex]

A. [tex]\[ x^{\frac{5}{2}} \][/tex]

B. [tex]\[ \left(\frac{1}{x^2}\right)^5 \][/tex]

C. [tex]\[ x^{\frac{2}{5}} \][/tex]

D. [tex]\[ \frac{x^2}{x^6} \][/tex]



Answer :

To rewrite the radical expression [tex]\((\sqrt{x})^5\)[/tex] in rational exponent form, let's follow these steps meticulously:

1. Identify the Radical Expression:
You are given:
[tex]\[ (\sqrt{x})^5 \][/tex]

2. Convert the Radical to a Rational Exponent:
Recall that the square root of [tex]\(x\)[/tex] can be represented as a rational exponent. The square root of [tex]\(x\)[/tex] is equivalent to [tex]\(x\)[/tex] raised to the power of [tex]\(\frac{1}{2}\)[/tex]. Therefore:
[tex]\[ \sqrt{x} = x^{\frac{1}{2}} \][/tex]

3. Raise the Equivalent Expression to the Given Power:
The given expression raises [tex]\(\sqrt{x}\)[/tex] to the 5th power. Substituting the rational exponent form of [tex]\(\sqrt{x}\)[/tex], we get:
[tex]\[ (\sqrt{x})^5 = (x^{\frac{1}{2}})^5 \][/tex]

4. Apply the Power Rule for Exponents:
When raising a power to another power, you multiply the exponents. Here, we need to multiply [tex]\(\frac{1}{2}\)[/tex] by 5:
[tex]\[ (x^{\frac{1}{2}})^5 = x^{\frac{1}{2} \times 5} \][/tex]
Solving the multiplication in the exponent:
[tex]\[ \frac{1}{2} \times 5 = \frac{5}{2} \][/tex]

5. Write the Final Expression:
Therefore, the expression [tex]\((\sqrt{x})^5\)[/tex] in rational exponent form is:
[tex]\[ x^{\frac{5}{2}} \][/tex]

Based on this detailed step-by-step solution, the correct answer is:

A. [tex]\(x^{\frac{5}{2}}\)[/tex]