Which equation represents a line that passes through [tex]\left(4, \frac{1}{3}\right)[/tex] and has a slope of [tex]\frac{3}{4}[/tex]?

A. [tex]y - \frac{3}{4} = \frac{1}{3}(x - 4)[/tex]
B. [tex]y - \frac{1}{3} = \frac{3}{4}(x - 4)[/tex]
C. [tex]y - \frac{1}{3} = 4\left(x - \frac{3}{4}\right)[/tex]
D. [tex]y - 4 = \frac{3}{4}\left(x - \frac{1}{3}\right)[/tex]



Answer :

To determine which equation represents a line that passes through the point [tex]\((4, \frac{1}{3})\)[/tex] and has a slope of [tex]\(\frac{3}{4}\)[/tex], we can start by using the point-slope form of the equation of a line. The point-slope form is given by:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

where [tex]\((x_1, y_1)\)[/tex] is the given point and [tex]\(m\)[/tex] is the slope.

Given:
[tex]\[ (x_1, y_1) = \left(4, \frac{1}{3}\right) \][/tex]
[tex]\[ m = \frac{3}{4} \][/tex]

Substituting these values into the point-slope form, we get:

[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]

Now, let's compare this with the given options:

1. [tex]\( y - \frac{3}{4} = \frac{1}{3}(x - 4) \)[/tex]
2. [tex]\( y - \frac{1}{3} = \frac{3}{4}(x - 4) \)[/tex]
3. [tex]\( y - \frac{1}{3} = 4\left(x - \frac{3}{4}\right) \)[/tex]
4. [tex]\( y - 4 = \frac{3}{4}\left(x - \frac{1}{3}\right) \)[/tex]

The equation [tex]\( y - \frac{1}{3} = \frac{3}{4}(x - 4) \)[/tex] exactly matches the equation derived from the point-slope form.

Therefore, the correct equation is:

[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]

Hence, the correct answer is option 2.