The original mathematical expression appears to be garbled and nonsensical. Here is a rewritten version that makes sense:

Solve the following mathematical expressions:

[tex]\[
\begin{array}{l}
2 \times 2 - 2 \times 2 = 4 \\
4 \times 4 - y^2 = 4 \times 4 \\
6 \times 6 - \left(c^b\right) = 6 \times 6 \\
8 \times 8 - 58^2 = 59 \\
\end{array}
\][/tex]



Answer :

Sure, let's break this problem down step-by-step:

1. Expression 1: [tex]\( 2 \times 2 - 2 \times 2 \)[/tex]
[tex]\[ 2 \times 2 - 2 \times 2 = 4 - 4 = 0 \][/tex]
So, the first expression evaluates to 0.

2. Expression 2: [tex]\( 4 \times 4 - y^2 \)[/tex]
Assuming [tex]\( y = 2 \)[/tex]:
[tex]\[ 4 \times 4 - y^2 = 16 - 4 = 12 \][/tex]
So, the second expression evaluates to 12.

3. Expression 3: [tex]\( (4 \times 4 - y^2) \times (4 \times 4) \)[/tex]
Using the previous result of [tex]\( 4 \times 4 - y^2 = 12 \)[/tex]:
[tex]\[ 12 \times 16 = 192 \][/tex]
So, the third expression evaluates to 192.

4. Expression 4: [tex]\( 6 \times 6 - (c^x) \)[/tex]
Assuming [tex]\( c = 2 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ 6 \times 6 - (2^2) = 36 - 4 = 32 \][/tex]
So, the fourth expression evaluates to 32.

5. Expression 5: [tex]\( 6 \times 6 - 1 \)[/tex]
[tex]\[ 6 \times 6 - 1 = 36 - 1 = 35 \][/tex]
So, the fifth expression evaluates to 35.

6. Expression 6: [tex]\( -8 \times 8 - 58^2 \)[/tex]
[tex]\[ -8 \times 8 - 58^2 = -64 - 3364 = -3428 \][/tex]
So, the sixth expression evaluates to -3428.

Summarizing all the expressions, the results are:
1. 0
2. 12
3. 192
4. 32
5. 35
6. -3428