Simplify.

[tex]\[
\begin{array}{l}
-\sqrt{4} \\
-\sqrt{4} = \square
\end{array}
\][/tex]

---

Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
Do not translate the question or any part of the question.
If the question is nonsense, rewrite it so that it makes sense.
-----
Simplify.
[tex]$
\begin{array}{l}
\sqrt{3x} \cdot \sqrt{5y} \\
\sqrt{3x} \cdot \sqrt{5y}=
\end{array}
$[/tex]
[tex]$\square$[/tex]
Incorrect: 0
Clear all
Check answer
-----

Response:
Simplify.

[tex]\[
\begin{array}{l}
\sqrt{3x} \cdot \sqrt{5y} \\
\sqrt{3x} \cdot \sqrt{5y} = \square
\end{array}
\][/tex]



Answer :

To simplify the expression [tex]\(-\sqrt{4}\)[/tex]:

1. First, determine the square root of 4. The square root of 4 is a number which, when multiplied by itself, equals 4. In this case, [tex]\(\sqrt{4} = 2\)[/tex].

2. Next, apply the negation to the result of the square root. Negating the number 2 gives [tex]\(-2\)[/tex].

Thus, the simplified expression [tex]\(-\sqrt{4}\)[/tex] is:

[tex]\[ -\sqrt{4} = -2 \][/tex]

Therefore, the final answer in the box is:

[tex]\[ \boxed{-2} \][/tex]