noboa7
Answered

Which expression is equivalent to [tex] \frac{-18 a^{-2} b^5}{-12 a^{-4} b^{-6}} ? [/tex] Assume [tex] a \neq 0, b \neq 0 [/tex].

A. [tex] \frac{2 a^2 b^{11}}{3} [/tex]
B. [tex] \frac{2 a^2 b^{30}}{3} [/tex]
C. [tex] \frac{3 a^2 b^{11}}{2} [/tex]
D. [tex] \frac{3 a^2 b^{30}}{2} [/tex]



Answer :

To simplify the given expression [tex]\(\frac{-18 a^{-2} b^5}{-12 a^{-4} b^{-6}}\)[/tex], we will proceed step by step.

1. Simplify the coefficients:

The coefficients are [tex]\(-18\)[/tex] in the numerator and [tex]\(-12\)[/tex] in the denominator.

[tex]\[ \frac{-18}{-12} = \frac{18}{12} = \frac{3}{2} \][/tex]

The simplified coefficient is therefore [tex]\(\frac{3}{2}\)[/tex].

2. Simplify the variable [tex]\(a\)[/tex]:

The numerator has [tex]\(a^{-2}\)[/tex] and the denominator has [tex]\(a^{-4}\)[/tex].

Using the properties of exponents, namely [tex]\(a^m / a^n = a^{m-n}\)[/tex],

[tex]\[ \frac{a^{-2}}{a^{-4}} = a^{-2 - (-4)} = a^{-2 + 4} = a^{2} \][/tex]

So, the simplified expression involving [tex]\(a\)[/tex] is [tex]\(a^2\)[/tex].

3. Simplify the variable [tex]\(b\)[/tex]:

The numerator has [tex]\(b^5\)[/tex] and the denominator has [tex]\(b^{-6}\)[/tex].

Again, using the properties of exponents,

[tex]\[ \frac{b^5}{b^{-6}} = b^{5 - (-6)} = b^{5 + 6} = b^{11} \][/tex]

So, the simplified expression involving [tex]\(b\)[/tex] is [tex]\(b^{11}\)[/tex].

4. Combine all parts:

Combining the simplified coefficient, [tex]\(a\)[/tex] term, and [tex]\(b\)[/tex] term, the simplified expression is:

[tex]\[ \frac{3}{2} \cdot a^2 \cdot b^{11} = \frac{3 a^2 b^{11}}{2} \][/tex]

Therefore, the equivalent expression to [tex]\(\frac{-18 a^{-2} b^5}{-12 a^{-4} b^{-6}}\)[/tex] is:

[tex]\[ \boxed{\frac{3 a^2 b^{11}}{2}} \][/tex]