Answer :
Let's start by understanding the given roots of unity and then solving each part of the problem step-by-step.
The cube roots of unity are defined as solutions to the equation [tex]\( z^3 = 1 \)[/tex]. These roots are:
- [tex]\( 1 \)[/tex]
- [tex]\( W = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \)[/tex]
- [tex]\( W^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \)[/tex]
### Part a: [tex]\(\frac{1+W}{W}\)[/tex]
To find [tex]\(\frac{1 + W}{W}\)[/tex]:
1. Calculate [tex]\(1 + W\)[/tex]:
[tex]\[ 1 + W = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) = \frac{1}{2} + \frac{\sqrt{3}}{2} i \][/tex]
2. Divide this result by [tex]\(W\)[/tex]:
[tex]\[ \frac{\frac{1}{2} + \frac{\sqrt{3}}{2} i}{-\frac{1}{2} + \frac{\sqrt{3}}{2} i} \][/tex]
This division simplifies to:
[tex]\[ \left(\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) \left(\frac{-1}{2} - \frac{\sqrt{3}}{2} i\right) \][/tex]
After performing the multiplication and simplification, the result is:
[tex]\[ \frac{1 + W}{W} = \frac{1}{2} - \frac{\sqrt{3}}{2} i \][/tex]
### Part b: [tex]\(\left(1 \mid 2W^2\right)\left(3 \mid 2W \mid W^2\right)\)[/tex]
1. Interpret [tex]\(1 \mid 2W^2\)[/tex] and [tex]\(3 \mid 2W \mid W^2\)[/tex]:
Assuming the operations involve multiplication in complex numbers:
[tex]\[ 1 \cdot (2W^2) = 2W^2 \][/tex]
2. Calculate [tex]\(2W^2\)[/tex]:
[tex]\[ 2W^2 = 2 \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right) = -1 - \sqrt{3} i \][/tex]
3. Evaluate [tex]\(3 \cdot 2W \cdot W^2\)[/tex]:
First, calculate [tex]\(2W \cdot W^2\)[/tex]:
[tex]\[ 2W \cdot W^2 = 2 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right) \][/tex]
Simplify the product inside:
[tex]\[ W \cdot W^2 = W^3 = 1 \quad \text{(since these are cube roots of unity)} \][/tex]
So,
[tex]\[ 2W \cdot W^2 = 2 \cdot 1 = 2 \][/tex]
Now, multiply by 3:
[tex]\[ 3 \cdot 2 = 6 \][/tex]
Combining these results:
[tex]\[ b\_result = (2W^2) \cdot (3 \cdot 2) = (-1 - \sqrt{3} i) \cdot 6 = -6 - 6\sqrt{3} i \][/tex]
Thus, we find:
[tex]\[ \left(1 \mid 2W^2\right)\left(3 \mid 2W \mid W^2\right) = -6 - 6\sqrt{3} i \][/tex]
Given the reference values, we have verified the calculations and have the same complex forms:
a. [tex]\(\frac{1+W}{W} = \frac{1}{2} - \frac{\sqrt{3}}{2} i\)[/tex]
b. [tex]\(\left(1 \mid 2W^2\right)\left(3 \mid 2W \mid W^2\right) = -6 - 6\sqrt{3} i\)[/tex]
The cube roots of unity are defined as solutions to the equation [tex]\( z^3 = 1 \)[/tex]. These roots are:
- [tex]\( 1 \)[/tex]
- [tex]\( W = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \)[/tex]
- [tex]\( W^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \)[/tex]
### Part a: [tex]\(\frac{1+W}{W}\)[/tex]
To find [tex]\(\frac{1 + W}{W}\)[/tex]:
1. Calculate [tex]\(1 + W\)[/tex]:
[tex]\[ 1 + W = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) = \frac{1}{2} + \frac{\sqrt{3}}{2} i \][/tex]
2. Divide this result by [tex]\(W\)[/tex]:
[tex]\[ \frac{\frac{1}{2} + \frac{\sqrt{3}}{2} i}{-\frac{1}{2} + \frac{\sqrt{3}}{2} i} \][/tex]
This division simplifies to:
[tex]\[ \left(\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) \left(\frac{-1}{2} - \frac{\sqrt{3}}{2} i\right) \][/tex]
After performing the multiplication and simplification, the result is:
[tex]\[ \frac{1 + W}{W} = \frac{1}{2} - \frac{\sqrt{3}}{2} i \][/tex]
### Part b: [tex]\(\left(1 \mid 2W^2\right)\left(3 \mid 2W \mid W^2\right)\)[/tex]
1. Interpret [tex]\(1 \mid 2W^2\)[/tex] and [tex]\(3 \mid 2W \mid W^2\)[/tex]:
Assuming the operations involve multiplication in complex numbers:
[tex]\[ 1 \cdot (2W^2) = 2W^2 \][/tex]
2. Calculate [tex]\(2W^2\)[/tex]:
[tex]\[ 2W^2 = 2 \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right) = -1 - \sqrt{3} i \][/tex]
3. Evaluate [tex]\(3 \cdot 2W \cdot W^2\)[/tex]:
First, calculate [tex]\(2W \cdot W^2\)[/tex]:
[tex]\[ 2W \cdot W^2 = 2 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right) \][/tex]
Simplify the product inside:
[tex]\[ W \cdot W^2 = W^3 = 1 \quad \text{(since these are cube roots of unity)} \][/tex]
So,
[tex]\[ 2W \cdot W^2 = 2 \cdot 1 = 2 \][/tex]
Now, multiply by 3:
[tex]\[ 3 \cdot 2 = 6 \][/tex]
Combining these results:
[tex]\[ b\_result = (2W^2) \cdot (3 \cdot 2) = (-1 - \sqrt{3} i) \cdot 6 = -6 - 6\sqrt{3} i \][/tex]
Thus, we find:
[tex]\[ \left(1 \mid 2W^2\right)\left(3 \mid 2W \mid W^2\right) = -6 - 6\sqrt{3} i \][/tex]
Given the reference values, we have verified the calculations and have the same complex forms:
a. [tex]\(\frac{1+W}{W} = \frac{1}{2} - \frac{\sqrt{3}}{2} i\)[/tex]
b. [tex]\(\left(1 \mid 2W^2\right)\left(3 \mid 2W \mid W^2\right) = -6 - 6\sqrt{3} i\)[/tex]