Answer :

To simplify the given expression [tex]\( x^{\frac{1}{5}} + y^{\frac{5}{5}} \)[/tex] using radicals and integer exponents, follow these steps:

### Step 1: Simplify Exponents

1. Rewrite [tex]\( y^{\frac{5}{5}} \)[/tex]:

Notice that [tex]\(\frac{5}{5} = 1\)[/tex]. Therefore,
[tex]\[ y^{\frac{5}{5}} = y^{1} = y \][/tex]

2. Rewrite [tex]\( x^{\frac{1}{5}} \)[/tex]:

Rewrite the fractional exponent as a radical. The expression [tex]\( x^{\frac{1}{5}} \)[/tex] can be expressed as the 5th root of [tex]\( x \)[/tex]:
[tex]\[ x^{\frac{1}{5}} = \sqrt[5]{x} \][/tex]

### Step 2: Combine Radicals and Integers

After rewriting both terms, the expression simplifies to:
[tex]\[ \sqrt[5]{x} + y \][/tex]

### Final Answer

Thus, the simplified form of [tex]\( x^{\frac{1}{5}} + y^{\frac{5}{5}} \)[/tex] using radicals and integer exponents is:
[tex]\[ \boxed{\sqrt[5]{x} + y} \][/tex]