Answer :
Let's evaluate the function [tex]\( g(x) = \left| x^3 - 3x^2 + 3x - 1 \right| \)[/tex] at [tex]\( x = -4 \)[/tex].
First, we will substitute [tex]\( x = -4 \)[/tex] into the polynomial inside the absolute value:
[tex]\[ g(-4) = \left| (-4)^3 - 3(-4)^2 + 3(-4) - 1 \right| \][/tex]
Next, we will evaluate each term individually:
[tex]\[ (-4)^3 = -64 \][/tex]
[tex]\[ 3(-4)^2 = 3 \times 16 = 48 \][/tex]
[tex]\[ 3(-4) = -12 \][/tex]
[tex]\[ -1 \text{ is a constant term} \][/tex]
Now, putting all these together:
[tex]\[ g(-4) = \left| -64 - 48 - 12 - 1 \right| \][/tex]
Combine the terms inside the absolute value:
[tex]\[ g(-4) = \left| -64 - 48 - 12 - 1 \right| \][/tex]
[tex]\[ g(-4) = \left| -125 \right| \][/tex]
The absolute value of [tex]\(-125\)[/tex] is:
[tex]\[ \left| -125 \right| = 125 \][/tex]
Therefore, the value of the function [tex]\( g(x) \)[/tex] at [tex]\( x = -4 \)[/tex] is:
[tex]\[ g(-4) = 125 \][/tex]
First, we will substitute [tex]\( x = -4 \)[/tex] into the polynomial inside the absolute value:
[tex]\[ g(-4) = \left| (-4)^3 - 3(-4)^2 + 3(-4) - 1 \right| \][/tex]
Next, we will evaluate each term individually:
[tex]\[ (-4)^3 = -64 \][/tex]
[tex]\[ 3(-4)^2 = 3 \times 16 = 48 \][/tex]
[tex]\[ 3(-4) = -12 \][/tex]
[tex]\[ -1 \text{ is a constant term} \][/tex]
Now, putting all these together:
[tex]\[ g(-4) = \left| -64 - 48 - 12 - 1 \right| \][/tex]
Combine the terms inside the absolute value:
[tex]\[ g(-4) = \left| -64 - 48 - 12 - 1 \right| \][/tex]
[tex]\[ g(-4) = \left| -125 \right| \][/tex]
The absolute value of [tex]\(-125\)[/tex] is:
[tex]\[ \left| -125 \right| = 125 \][/tex]
Therefore, the value of the function [tex]\( g(x) \)[/tex] at [tex]\( x = -4 \)[/tex] is:
[tex]\[ g(-4) = 125 \][/tex]