The following table shows the balance on a credit card over the period of 1 month, that charges a 15.5\% APR (interest rate).

\begin{tabular}{|c|c|c|}
\hline Days & Balance & Description \\
\hline [tex]$1-5$[/tex] & [tex]$\$[/tex] 200[tex]$ & Initial Balance \\
\hline $[/tex]6-20[tex]$ & $[/tex]\[tex]$ 350$[/tex] & [tex]$\$[/tex] 150[tex]$ purchase \\
\hline $[/tex]21-30[tex]$ & $[/tex]\[tex]$ 150$[/tex] & [tex]$\$[/tex] 200[tex]$ payment \\
\hline
\end{tabular}

What is the finance charge, on the average daily balance, for this card over this 1 month period?

Finance Charge $[/tex]=\[tex]$[?]$[/tex]

Round to the nearest cent.



Answer :

To determine the finance charge on the average daily balance for a credit card over a 1-month period with a 15.5% Annual Percentage Rate (APR), we need to follow these steps:

1. Convert the Annual Rate to a Daily Rate:

The APR is given as 15.5%. First, let's convert this annual rate to a daily rate since the charges are calculated daily.

[tex]\[ \text{Annual Rate} = 15.5\% = \frac{15.5}{100} = 0.155 \][/tex]

To find the daily rate, divide the annual rate by the number of days in a year (365):

[tex]\[ \text{Daily Rate} = \frac{0.155}{365} \approx 0.00042465753424657536 \][/tex]

2. Compute the Average Daily Balance:

Given the balance changes over three distinct periods within the month, we must calculate the average daily balance. The table provides the balance for different periods:

[tex]\[ \begin{array}{|c|c|} \hline \text{Days} & \text{Balance} \\ \hline 1-5 & \$ 200 \\ 6-20 & \$ 350 \\ 21-30 & \$ 150 \\ \hline \end{array} \][/tex]

We calculate the sum of each daily balance weighted by the number of days, then divide by the total number of days in the month (30 days):

[tex]\[ \text{Average Daily Balance} = \frac{(5 \times 200) + (15 \times 350) + (10 \times 150)}{30} \][/tex]

Calculate the sums for the numerators:

[tex]\[ (5 \times 200) = 1000 \][/tex]
[tex]\[ (15 \times 350) = 5250 \][/tex]
[tex]\[ (10 \times 150) = 1500 \][/tex]

Now, sum these products:

[tex]\[ 1000 + 5250 + 1500 = 7750 \][/tex]

Finally, divide this sum by the number of days in the month:

[tex]\[ \text{Average Daily Balance} = \frac{7750}{30} \approx 258.3333333333333 \][/tex]

3. Calculate the Finance Charge:

The monthly finance charge is determined by multiplying the average daily balance by the daily rate and the number of days in the billing cycle (30 days):

[tex]\[ \text{Finance Charge} = \text{Average Daily Balance} \times \text{Daily Rate} \times 30 \][/tex]

Plug in the values:

[tex]\[ \text{Finance Charge} = 258.3333333333333 \times 0.00042465753424657536 \times 30 \approx 3.2924657534246575 \][/tex]

Rounding to the nearest cent:

[tex]\[ \text{Finance Charge} = \$3.29 \][/tex]

So the finance charge on the average daily balance for this card over the 1-month period is:

[tex]\[ \boxed{\$3.29} \][/tex]