Review the steps of the proof of the identity:

[tex]\[
\sin \left(A-\frac{3 \pi}{2}\right)=\cos A
\][/tex]

Step 1: [tex]\(\sin \left(A-\frac{3 \pi}{2}\right)=\sin A \cos \left(\frac{3 \pi}{2}\right)-\cos A \sin \left(\frac{3 \pi}{2}\right)\)[/tex]

Step 2: [tex]\(=(\sin A)(0)+\cos A(-1)\)[/tex]

Step 3: [tex]\(=(\sin A)(0)+(1)(\cos A)\)[/tex]

Step 4: [tex]\(=0+\cos A\)[/tex]

Step 5: [tex]\(\cos A\)[/tex]

At which step was an error made?

A. Step 1

B. Step 2

C. Step 3

D. Step 4



Answer :

Let's carefully review the steps provided in the proof of the identity [tex]\(\sin \left(A - \frac{3\pi}{2}\right) = \cos A\)[/tex]:

Identity to prove:
[tex]\[ \sin \left(A - \frac{3\pi}{2}\right) = \cos A \][/tex]

Step-by-step review:

1. Step 1:
[tex]\[ \sin \left(A - \frac{3\pi}{2}\right) = \sin A \cos \left(\frac{3\pi}{2}\right) - \cos A \sin \left(\frac{3\pi}{2}\right) \][/tex]
This step applies the angle subtraction formula for sine correctly:
[tex]\[ \sin(A - B) = \sin A \cos B - \cos A \sin B \][/tex]

2. Step 2:
[tex]\[ = (\sin A)(0) + (\cos A)(-1) \][/tex]
Because:
[tex]\[ \cos \left(\frac{3\pi}{2}\right) = 0 \quad \text{and} \quad \sin \left(\frac{3\pi}{2}\right) = -1 \][/tex]
This step correctly substitutes the values of [tex]\(\cos \left(\frac{3\pi}{2}\right) = 0\)[/tex] and [tex]\(\sin \left(\frac{3\pi}{2}\right) = -1\)[/tex].

3. Step 3:
[tex]\[ = (\sin A)(0) + (1)(\cos A) \][/tex]
Here's the error. The correct term should be:
[tex]\[ = (\sin A)(0) + (-1)(\cos A) \][/tex]
Equivalently:
[tex]\[ = 0 - \cos A \][/tex]

4. Step 4:
[tex]\[ 0 + \cos A \][/tex]
This step carries forward the error from Step 3. The correct simplification from Step 2 should have been:
[tex]\[ 0 - \cos A \][/tex]

5. Step 5:
[tex]\[ \cos A \][/tex]
Again, this carries forward the mistake.

The error is first made in Step 3, where the negative sign in front of [tex]\(\cos A\)[/tex] is incorrectly considered as positive. Therefore, the correct answer is:

[tex]\[ \boxed{3} \][/tex]