Rewrite the following expression in a more readable format:

[tex]\[
\frac{E-3}{5.2 \times 10^4}
\][/tex]

(Note: The expression "E-3" is unclear in context and might need clarification or correction. Ensure that the expression is accurate before proceeding.)



Answer :

To solve the expression [tex]\( E-3 / 5.2 \times 10^4 \)[/tex], we need to carefully interpret and evaluate it step-by-step.

1. Interpretation of [tex]\( E-3 \)[/tex]:

- The term [tex]\( E-3 \)[/tex] is commonly used in scientific notation to represent [tex]\( 10^{-3} \)[/tex].
- Therefore, [tex]\( E-3 \)[/tex] can be translated to [tex]\( 10^{-3} \)[/tex].

2. Evaluating the Numerator:

- The numerator of our expression is [tex]\( 10^{-3} \)[/tex].
- Since [tex]\( 10^{-3} = 0.001 \)[/tex], the numerator becomes 0.001.

3. Interpreting the Denominator:

- The given denominator is [tex]\( 5.2 \times 10^4 \)[/tex].
- We keep the value as it is: [tex]\( 5.2 \times 10^4 \)[/tex].

4. Evaluating the Denominator:

- We need to multiply 5.2 by [tex]\( 10^4 \)[/tex].
- [tex]\( 10^4 = 10000 \)[/tex], hence [tex]\( 5.2 \times 10000 = 52000 \)[/tex].
- Therefore, the denominator is 52000.

5. Performing the Division:

- Now, we need to divide the numerator by the denominator.
- The division is [tex]\( \frac{0.001}{52000} \)[/tex].

- When we perform the division, the result is approximately [tex]\( 1.923076923076923 \times 10^{-8} \)[/tex].

So, [tex]\( \frac{10^{-3}}{5.2 \times 10^4} = 1.923076923076923 \times 10^{-8} \)[/tex].

Thus, the solution to the given expression [tex]\( E-3 / 5.2 \times 10^4 \)[/tex] is:

[tex]\[ 1.923076923076923 \times 10^{-8} \][/tex]