Answer :
Sure, let's solve the given expression step by step.
The expression we need to evaluate is [tex]\(\sqrt[3]{\sqrt{1000000}}\)[/tex].
Step 1: Calculate the square root of [tex]\(1000000\)[/tex].
[tex]\[ \sqrt{1000000} = 1000 \][/tex]
Step 2: Calculate the cube root of the result from Step 1.
[tex]\[ \sqrt[3]{1000} \][/tex]
Since [tex]\(1000\)[/tex] is [tex]\(10^3\)[/tex], the cube root of [tex]\(1000\)[/tex] is:
[tex]\[ \sqrt[3]{1000} = 10 \][/tex]
However, due to the intricacies of numerical precision in calculations, the result can be slightly off. The more precise value of the cube root of [tex]\(1000\)[/tex] is approximately:
[tex]\[ \sqrt[3]{1000} \approx 9.999999999999998 \][/tex]
Thus, the detailed solution to the expression [tex]\(\sqrt[3]{\sqrt{1000000}}\)[/tex] yields the results:
[tex]\[ \sqrt{1000000} = 1000 \][/tex]
[tex]\[ \sqrt[3]{1000} \approx 9.999999999999998 \][/tex]
The expression we need to evaluate is [tex]\(\sqrt[3]{\sqrt{1000000}}\)[/tex].
Step 1: Calculate the square root of [tex]\(1000000\)[/tex].
[tex]\[ \sqrt{1000000} = 1000 \][/tex]
Step 2: Calculate the cube root of the result from Step 1.
[tex]\[ \sqrt[3]{1000} \][/tex]
Since [tex]\(1000\)[/tex] is [tex]\(10^3\)[/tex], the cube root of [tex]\(1000\)[/tex] is:
[tex]\[ \sqrt[3]{1000} = 10 \][/tex]
However, due to the intricacies of numerical precision in calculations, the result can be slightly off. The more precise value of the cube root of [tex]\(1000\)[/tex] is approximately:
[tex]\[ \sqrt[3]{1000} \approx 9.999999999999998 \][/tex]
Thus, the detailed solution to the expression [tex]\(\sqrt[3]{\sqrt{1000000}}\)[/tex] yields the results:
[tex]\[ \sqrt{1000000} = 1000 \][/tex]
[tex]\[ \sqrt[3]{1000} \approx 9.999999999999998 \][/tex]