Which of these expressions is equivalent to [tex]\log \left(4^6\right)[/tex]?

A. [tex]\log (6) \cdot \log (4)[/tex]
B. [tex]\log (6) + \log (4)[/tex]
C. [tex]6 \cdot \log (4)[/tex]
D. [tex]\log (6) - \log (4)[/tex]



Answer :

To determine which of these expressions is equivalent to [tex]\(\log \left(4^6\right)\)[/tex], let's start by using the properties of logarithms.

The expression [tex]\(\log \left(4^6\right)\)[/tex] can be simplified using the power rule of logarithms, which states that [tex]\(\log(a^b) = b \cdot \log(a)\)[/tex].

Given [tex]\(\log \left(4^6\right)\)[/tex], we apply the power rule:

[tex]\[ \log \left(4^6\right) = 6 \cdot \log (4) \][/tex]

Therefore, the correct expression that is equivalent to [tex]\(\log \left(4^6\right)\)[/tex] is [tex]\(6 \cdot \log (4)\)[/tex].

Now, let's compare this result with the given choices:

A) [tex]\(\log (6) \cdot \log (4)\)[/tex] is not equivalent to [tex]\(6 \cdot \log (4)\)[/tex].

B) [tex]\(\log (6) + \log (4)\)[/tex] is not equivalent to [tex]\(6 \cdot \log (4)\)[/tex].

C) [tex]\(6 \cdot \log (4)\)[/tex] is exactly equivalent to our result.

D) [tex]\(\log (6) - \log (4)\)[/tex] is not equivalent to [tex]\(6 \cdot \log (4)\)[/tex].

Hence, the correct answer is:

C. [tex]\(6 \cdot \log (4)\)[/tex]

Other Questions