Answer :

To graph the line that represents the equation [tex]\( y + 2 = \frac{1}{2}(x + 2) \)[/tex], follow these steps:

### Step 1: Simplify the Equation

First, we need to rewrite the given equation in the slope-intercept form [tex]\( y = mx + c \)[/tex].

Given:
[tex]\[ y + 2 = \frac{1}{2}(x + 2) \][/tex]

Expand and simplify the equation:
[tex]\[ y + 2 = \frac{1}{2}x + \frac{1}{2}(2) \][/tex]
[tex]\[ y + 2 = \frac{1}{2}x + 1 \][/tex]

Subtract 2 from both sides:
[tex]\[ y = \frac{1}{2}x + 1 - 2 \][/tex]
[tex]\[ y = \frac{1}{2}x - 1 \][/tex]

So, the equation in slope-intercept form is:
[tex]\[ y = \frac{1}{2}x - 1 \][/tex]

### Step 2: Identify Key Points

To plot the line, identify a few key points by substituting specific [tex]\( x \)[/tex]-values into the equation to find the corresponding [tex]\( y \)[/tex]-values.

1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ y = \frac{1}{2}(-2) - 1 \][/tex]
[tex]\[ y = -1 - 1 \][/tex]
[tex]\[ y = -2 \][/tex]

Point: [tex]\( (-2, -2) \)[/tex]

2. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = \frac{1}{2}(0) - 1 \][/tex]
[tex]\[ y = -1 \][/tex]

Point: [tex]\( (0, -1) \)[/tex]

3. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = \frac{1}{2}(2) - 1 \][/tex]
[tex]\[ y = 1 - 1 \][/tex]
[tex]\[ y = 0 \][/tex]

Point: [tex]\( (2, 0) \)[/tex]

4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = \frac{1}{2}(4) - 1 \][/tex]
[tex]\[ y = 2 - 1 \][/tex]
[tex]\[ y = 1 \][/tex]

Point: [tex]\( (4, 1) \)[/tex]

### Step 3: Plot the Points

Plot the points on graph paper or a coordinate plane:
- [tex]\( (-2, -2) \)[/tex]
- [tex]\( (0, -1) \)[/tex]
- [tex]\( (2, 0) \)[/tex]
- [tex]\( (4, 1) \)[/tex]

### Step 4: Draw the Line

Draw a straight line through the points to represent the equation [tex]\( y = \frac{1}{2}x - 1 \)[/tex].

### Final Graph

Your final graph should show a line passing through the points [tex]\((-2, -2)\)[/tex], [tex]\((0, -1)\)[/tex], [tex]\((2, 0)\)[/tex], and [tex]\((4, 1)\)[/tex]. This line represents the equation [tex]\( y = \frac{1}{2}x - 1 \)[/tex].