Answer :

Given the equation:

[tex]\[ v_f^2 = v_i^2 + 2 a x \][/tex]

we need to solve for [tex]\( x \)[/tex].

Let's proceed step by step:

1. Rewrite the equation:

The given equation is:
[tex]\[ v_f^2 = v_i^2 + 2 a x \][/tex]

2. Isolate the term involving [tex]\( x \)[/tex]:

To solve for [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex] on one side of the equation. Subtract [tex]\( v_i^2 \)[/tex] from both sides:
[tex]\[ v_f^2 - v_i^2 = 2 a x \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Divide both sides of the equation by [tex]\( 2a \)[/tex]:
[tex]\[ x = \frac{v_f^2 - v_i^2}{2 a} \][/tex]

Now plug in the given values:
- [tex]\( v_f = 10 \)[/tex] (final velocity)
- [tex]\( v_i = 2 \)[/tex] (initial velocity)
- [tex]\( a = 3 \)[/tex] (acceleration)

4. Substitute the values into the formula:

[tex]\[ x = \frac{10^2 - 2^2}{2 \cdot 3} \][/tex]

5. Perform the calculations:

[tex]\[ x = \frac{100 - 4}{6} \][/tex]
[tex]\[ x = \frac{96}{6} \][/tex]
[tex]\[ x = 16 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ x = 16 \][/tex]