Answer :
To find the volume of a 1.00 M (molar) LiF (Lithium Fluoride) solution needed to provide 1.50 moles of LiF, we can use the formula relating moles, molarity, and volume:
[tex]\[ \text{Moles} = \text{Molarity} \times \text{Volume} \][/tex]
We need to calculate the volume in liters. Rearranging the formula for volume, we get:
[tex]\[ \text{Volume} = \frac{\text{Moles}}{\text{Molarity}} \][/tex]
Given:
- The moles of LiF needed ([tex]\( \text{n} \)[/tex]) = 1.50 moles
- The molarity of the solution ([tex]\( \text{C} \)[/tex]) = 1.00 M
Plugging the values into the formula:
[tex]\[ \text{Volume} = \frac{1.50 \text{ moles}}{1.00 \text{ M}} = 1.50 \text{ L} \][/tex]
Next, we convert the volume from liters to milliliters. Since 1 liter (L) = 1000 milliliters (mL):
[tex]\[ 1.50 \text{ L} \times 1000 \text{ mL/L} = 1500 \text{ mL} \][/tex]
Therefore, the volume of a 1.00 M LiF solution needed to provide 1.50 moles of LiF is 1500 mL.
So, the correct answer is:
D. 1500 mL
[tex]\[ \text{Moles} = \text{Molarity} \times \text{Volume} \][/tex]
We need to calculate the volume in liters. Rearranging the formula for volume, we get:
[tex]\[ \text{Volume} = \frac{\text{Moles}}{\text{Molarity}} \][/tex]
Given:
- The moles of LiF needed ([tex]\( \text{n} \)[/tex]) = 1.50 moles
- The molarity of the solution ([tex]\( \text{C} \)[/tex]) = 1.00 M
Plugging the values into the formula:
[tex]\[ \text{Volume} = \frac{1.50 \text{ moles}}{1.00 \text{ M}} = 1.50 \text{ L} \][/tex]
Next, we convert the volume from liters to milliliters. Since 1 liter (L) = 1000 milliliters (mL):
[tex]\[ 1.50 \text{ L} \times 1000 \text{ mL/L} = 1500 \text{ mL} \][/tex]
Therefore, the volume of a 1.00 M LiF solution needed to provide 1.50 moles of LiF is 1500 mL.
So, the correct answer is:
D. 1500 mL