What is the simplified form of [tex]\sqrt{10,000 x^{64}}[/tex]?

A. [tex]5000 x^{32}[/tex]

B. [tex]5000 x^8[/tex]

C. [tex]100 x^8[/tex]

D. [tex]100 x^{32}[/tex]



Answer :

To simplify the expression [tex]\(\sqrt{10,000 x^{64}}\)[/tex], we need to handle the square root of each part of the expression separately.

1. Simplify the numerical part: [tex]\(\sqrt{10,000}\)[/tex]

We know that [tex]\(10,000\)[/tex] can be written as [tex]\(10,000 = 100^2\)[/tex], which implies that:
[tex]\[ \sqrt{10,000} = \sqrt{100^2} = 100 \][/tex]

2. Simplify the variable part: [tex]\(\sqrt{x^{64}}\)[/tex]

Using the property of exponents, [tex]\(\sqrt{x^{64}}\)[/tex] can be rewritten as [tex]\(x^{64/2}\)[/tex], which simplifies to:
[tex]\[ \sqrt{x^{64}} = x^{64/2} = x^{32} \][/tex]

Now, combining the simplified numerical and variable parts, we get:
[tex]\[ \sqrt{10,000 x^{64}} = 100 \cdot x^{32} \][/tex]

Thus, the simplified form of [tex]\(\sqrt{10,000 x^{64}}\)[/tex] is:
[tex]\[ \boxed{100 x^{32}} \][/tex]