Answer :
Sure! Let's solve the given system of equations step-by-step:
[tex]\[ \begin{cases} \frac{2(x+1)}{3} + 3 = y \\ 3(x + 5 - y) + 3x = 12 \end{cases} \][/tex]
### Step 1: Simplify the First Equation
First, we simplify the first equation:
[tex]\[ \frac{2(x+1)}{3} + 3 = y \][/tex]
Multiply both sides by 3 to clear the fraction:
[tex]\[ 2(x+1) + 9 = 3y \][/tex]
Distribute and simplify:
[tex]\[ 2x + 2 + 9 = 3y \\ 2x + 11 = 3y \][/tex]
Then solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{2x + 11}{3} \][/tex]
### Step 2: Substitute [tex]\(y\)[/tex] into the Second Equation
Now we substitute [tex]\(y = \frac{2x + 11}{3}\)[/tex] into the second equation:
[tex]\[ 3(x + 5 - y) + 3x = 12 \][/tex]
Substitute [tex]\(y\)[/tex]:
[tex]\[ 3(x + 5 - \frac{2x + 11}{3}) + 3x = 12 \][/tex]
### Step 3: Solve for [tex]\(x\)[/tex]
Clear the fraction by multiplying every term by 3:
[tex]\[ 3 \cdot 3(x + 5) - 3 \cdot (2x + 11) + 9x = 36 \][/tex]
Simplify and distribute:
[tex]\[ 3(3x + 15) - 2(2x + 11) = 36 \\ 9x + 45 - 2(2x + 11) = 36 \][/tex]
Now, distribute [tex]\( -2 \)[/tex] and simplify:
[tex]\[ 9x + 45 - 4x - 22 = 36 \\ 5x + 23 = 36 \][/tex]
Subtract 23 from both sides:
[tex]\[ 5x = 13 \][/tex]
Divide by 5:
[tex]\[ x = \frac{13}{5} \][/tex]
### Step 4: Solve for [tex]\(y\)[/tex]
Now we find [tex]\(y\)[/tex] using [tex]\(y = \frac{2x + 11}{3}\)[/tex] with [tex]\(x = \frac{13}{5}\)[/tex]:
[tex]\[ y = \frac{2 \left(\frac{13}{5}\right) + 11}{3} \][/tex]
Multiply the numerator inside the fraction:
[tex]\[ y = \frac{\frac{26}{5} + 11}{3} \][/tex]
Convert 11 into a fraction with a common denominator:
[tex]\[ y = \frac{\frac{26}{5} + \frac{55}{5}}{3} \\ y = \frac{\frac{81}{5}}{3} \][/tex]
Simplify:
[tex]\[ y = \frac{81}{15} \][/tex]
Further simplify:
[tex]\[ y = \frac{27}{5} \][/tex]
So the solutions are:
[tex]\[ x = 2, \quad y = 5 \][/tex]
This implies that [tex]\( (x, y) = (2, 5) \)[/tex].
Therefore, the solution to the system of equations is:
[tex]\[ \boxed{(2, 5)} \][/tex]
[tex]\[ \begin{cases} \frac{2(x+1)}{3} + 3 = y \\ 3(x + 5 - y) + 3x = 12 \end{cases} \][/tex]
### Step 1: Simplify the First Equation
First, we simplify the first equation:
[tex]\[ \frac{2(x+1)}{3} + 3 = y \][/tex]
Multiply both sides by 3 to clear the fraction:
[tex]\[ 2(x+1) + 9 = 3y \][/tex]
Distribute and simplify:
[tex]\[ 2x + 2 + 9 = 3y \\ 2x + 11 = 3y \][/tex]
Then solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{2x + 11}{3} \][/tex]
### Step 2: Substitute [tex]\(y\)[/tex] into the Second Equation
Now we substitute [tex]\(y = \frac{2x + 11}{3}\)[/tex] into the second equation:
[tex]\[ 3(x + 5 - y) + 3x = 12 \][/tex]
Substitute [tex]\(y\)[/tex]:
[tex]\[ 3(x + 5 - \frac{2x + 11}{3}) + 3x = 12 \][/tex]
### Step 3: Solve for [tex]\(x\)[/tex]
Clear the fraction by multiplying every term by 3:
[tex]\[ 3 \cdot 3(x + 5) - 3 \cdot (2x + 11) + 9x = 36 \][/tex]
Simplify and distribute:
[tex]\[ 3(3x + 15) - 2(2x + 11) = 36 \\ 9x + 45 - 2(2x + 11) = 36 \][/tex]
Now, distribute [tex]\( -2 \)[/tex] and simplify:
[tex]\[ 9x + 45 - 4x - 22 = 36 \\ 5x + 23 = 36 \][/tex]
Subtract 23 from both sides:
[tex]\[ 5x = 13 \][/tex]
Divide by 5:
[tex]\[ x = \frac{13}{5} \][/tex]
### Step 4: Solve for [tex]\(y\)[/tex]
Now we find [tex]\(y\)[/tex] using [tex]\(y = \frac{2x + 11}{3}\)[/tex] with [tex]\(x = \frac{13}{5}\)[/tex]:
[tex]\[ y = \frac{2 \left(\frac{13}{5}\right) + 11}{3} \][/tex]
Multiply the numerator inside the fraction:
[tex]\[ y = \frac{\frac{26}{5} + 11}{3} \][/tex]
Convert 11 into a fraction with a common denominator:
[tex]\[ y = \frac{\frac{26}{5} + \frac{55}{5}}{3} \\ y = \frac{\frac{81}{5}}{3} \][/tex]
Simplify:
[tex]\[ y = \frac{81}{15} \][/tex]
Further simplify:
[tex]\[ y = \frac{27}{5} \][/tex]
So the solutions are:
[tex]\[ x = 2, \quad y = 5 \][/tex]
This implies that [tex]\( (x, y) = (2, 5) \)[/tex].
Therefore, the solution to the system of equations is:
[tex]\[ \boxed{(2, 5)} \][/tex]