What is the product?

[tex]\[ 6\left(x^2-1\right) \cdot \frac{6x-1}{6(x+1)} \][/tex]

A. [tex]\( 6(x-1)^2 \)[/tex]

B. [tex]\( 6\left(x^2-1\right) \)[/tex]

C. [tex]\( (x+1)(6x-1) \)[/tex]

D. [tex]\( (x-1)(6x-1) \)[/tex]



Answer :

To find the product of the given expression:

[tex]\[ 6 \left(x^2 - 1\right) \cdot \frac{6x - 1}{6(x + 1)} \][/tex]

we'll simplify it step by step.

1. Factorization of [tex]\( x^2 - 1 \)[/tex]:
Notice that [tex]\( x^2 - 1 \)[/tex] can be factored using the difference of squares:

[tex]\[ x^2 - 1 = (x + 1)(x - 1) \][/tex]

2. Formulate the expression:
Substituting the factorization into the given expression gives:

[tex]\[ 6 \left[(x + 1)(x - 1)\right] \cdot \frac{6x - 1}{6(x + 1)} \][/tex]

3. Cancel out common factors:
Now, we can cancel out the common factor [tex]\( x + 1 \)[/tex]:

[tex]\[ 6 \left[(x + 1)(x - 1)\right] \cdot \frac{6x - 1}{6(x + 1)} = 6(x - 1) \cdot (6x - 1) \][/tex]

4. Express the simplified product:
We now have the simplified product:

[tex]\[ 6 \left(x - 1\right) \left(6x - 1\right) \][/tex]

To further simplify:

5. Distribute the 6:
Let's expand the expression inside the parentheses:

[tex]\[ 6 \left[(x - 1)(6x - 1)\right] \][/tex]

6. Expand the polynomial:
Multiply the binomials:

[tex]\[ (x - 1)(6x - 1) = x \cdot 6x + x \cdot (-1) - 1 \cdot 6x - 1 \cdot -1 \][/tex]
Which simplifies to:

[tex]\[ (x - 1)(6x - 1) = 6x^2 - x - 6x + 1 = 6x^2 - 7x + 1 \][/tex]

7. Multiply by 6:
Hence, multiplying by 6 gives:

[tex]\[ 6 \left(6x^2 - 7x + 1\right) \][/tex]

Therefore, the complete and simplified product for the given expression is:

[tex]\[ 6x^2 - 7x + 1 \][/tex]