An investment portfolio is shown below.

\begin{tabular}{|c|l|l|}
\hline
Investment & Amount Invested & ROR \\
\hline
Stock [tex]$A$[/tex] & [tex]$\$[/tex] 1,800[tex]$ & $[/tex]1.5 \%[tex]$ \\
\hline
Stock B & $[/tex]\[tex]$ 4,600$[/tex] & [tex]$3.7 \%$[/tex] \\
\hline
Stock C & [tex]$\$[/tex] 580[tex]$ & $[/tex]11.2 \%[tex]$ \\
\hline
Stock D & $[/tex]\[tex]$ 1,122$[/tex] & [tex]$-2.8 \%$[/tex] \\
\hline
\end{tabular}

Using technology, calculate the weighted dollar amount of Stock C.

A. [tex]$\$[/tex] 27.00[tex]$
B. $[/tex]\[tex]$ 64.96$[/tex]
C. [tex]$\$[/tex] 170.20[tex]$
D. $[/tex]\[tex]$ 184.00$[/tex]



Answer :

To find the weighted dollar amount of Stock C, we need to use the amount invested and the rate of return (ROR) for Stock C. Here are the given values:
- Amount Invested in Stock C: [tex]$580 - Rate of Return (ROR) for Stock C: 11.2% To find the weighted dollar amount of Stock C, follow these steps: 1. Convert the ROR from a percentage to a decimal. \[ 11.2\% = \frac{11.2}{100} = 0.112 \] 2. Multiply the amount invested in Stock C by the decimal ROR to find the weighted dollar amount. \[ \text{Weighted Amount of Stock C} = \text{Amount Invested in Stock C} \times \text{ROR in decimal} \] \[ = 580 \times 0.112 \] Using technology, the calculation yields: \[ 580 \times 0.112 = 64.96 \] Therefore, the weighted dollar amount of Stock C is: \[ \$[/tex] 64.96
\]

From the given options, the correct answer is:
[tex]\[ \$ 64.96 \][/tex]