Complete the table with the [tex]$y$[/tex]-values for the equation [tex]$y=x^2+1$[/tex].

\begin{tabular}{|c|c|}
\hline
Input [tex]$(x)$[/tex] & Output [tex]$(y)$[/tex] \\
\hline
-2 & [tex]$?$[/tex] \\
\hline
-1 & [tex]$?$[/tex] \\
\hline
0 & [tex]$?$[/tex] \\
\hline
1 & [tex]$?$[/tex] \\
\hline
2 & [tex]$?$[/tex] \\
\hline
\end{tabular}



Answer :

To complete the table with the [tex]\( y \)[/tex]-values for the equation [tex]\( y = x^2 + 1 \)[/tex], we will plug in each [tex]\( x \)[/tex]-value into the equation and solve for [tex]\( y \)[/tex].

1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ y = (-2)^2 + 1 = 4 + 1 = 5 \][/tex]
The output [tex]\( y \)[/tex] for [tex]\( x = -2 \)[/tex] is 5.

2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = (-1)^2 + 1 = 1 + 1 = 2 \][/tex]
The output [tex]\( y \)[/tex] for [tex]\( x = -1 \)[/tex] is 2.

3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0^2 + 1 = 0 + 1 = 1 \][/tex]
The output [tex]\( y \)[/tex] for [tex]\( x = 0 \)[/tex] is 1.

4. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 1^2 + 1 = 1 + 1 = 2 \][/tex]
The output [tex]\( y \)[/tex] for [tex]\( x = 1 \)[/tex] is 2.

5. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 2^2 + 1 = 4 + 1 = 5 \][/tex]
The output [tex]\( y \)[/tex] for [tex]\( x = 2 \)[/tex] is 5.

Now, we can fill in the table with the calculated [tex]\( y \)[/tex]-values.

[tex]\[ \begin{tabular}{|c|c|} \hline Input $(x)$ & Output $(y)$ \\ \hline -2 & 5 \\ \hline -1 & 2 \\ \hline 0 & 1 \\ \hline 1 & 2 \\ \hline 2 & 5 \\ \hline \end{tabular} \][/tex]

Thus, the completed table is:
[tex]\[ \begin{tabular}{|c|c|} \hline Input $(x)$ & Output $(y)$ \\ \hline -2 & 5 \\ \hline -1 & 2 \\ \hline 0 & 1 \\ \hline 1 & 2 \\ \hline 2 & 5 \\ \hline \end{tabular} \][/tex]