Write each expression with a single rational exponent. Show each step of your process. Which expressions are equivalent? Justify your reasoning.

A. [tex]\sqrt[4]{x^3}[/tex]

B. [tex]\frac{1}{x^{-1}}[/tex]

C. [tex]\sqrt[10]{x^5 \cdot x^4 \cdot x^2}[/tex]

D. [tex]x^{\frac{1}{3}} \cdot x^{\frac{1}{3}} \cdot x^{\frac{1}{3}}[/tex]



Answer :

Let's simplify each given expression step-by-step:

### Expression A: [tex]\(\sqrt[4]{x^3}\)[/tex]

The fourth root of [tex]\(x^3\)[/tex] can be written with a rational exponent:
[tex]\[ \sqrt[4]{x^3} = x^{\frac{3}{4}} \][/tex]

### Expression B: [tex]\(\frac{1}{x^{-1}}\)[/tex]

First, recall that the negative exponent rule states [tex]\(x^{-a} = \frac{1}{x^a}\)[/tex]. Using this, we get:
[tex]\[ \frac{1}{x^{-1}} = x^{1} \][/tex]

### Expression C: [tex]\(\sqrt[10]{x^5 \cdot x^4 \cdot x^2}\)[/tex]

Combine the exponents inside the root:
[tex]\[ x^5 \cdot x^4 \cdot x^2 = x^{5+4+2} = x^{11} \][/tex]
Then, apply the tenth root:
[tex]\[ \sqrt[10]{x^{11}} = x^{\frac{11}{10}} \][/tex]

### Expression D: [tex]\(x^{\frac{1}{3}} \cdot x^{\frac{1}{3}} \cdot x^{\frac{1}{3}}\)[/tex]

Combine the exponents by adding them:
[tex]\[ x^{\frac{1}{3}} \cdot x^{\frac{1}{3}} \cdot x^{\frac{1}{3}} = x^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = x^{1} = x \][/tex]

### Summary and Equivalence Check

- Expression A: [tex]\(x^{\frac{3}{4}}\)[/tex]
- Expression B: [tex]\(x\)[/tex]
- Expression C: [tex]\(x^{\frac{11}{10}}\)[/tex]
- Expression D: [tex]\(x\)[/tex]

By comparing the simplified forms with each other:

1. [tex]\(x^{\frac{3}{4}}\)[/tex]
2. [tex]\(x\)[/tex]
3. [tex]\(x^{\frac{11}{10}}\)[/tex]
4. [tex]\(x\)[/tex]

Thus, expressions B and D are equivalent because both simplify to [tex]\(x\)[/tex]. Expressions A and C are not equivalent to any other expressions in this set.