An equilateral triangle has an apothem measuring 2.16 cm and a perimeter of 22.45 cm. What is the area of the equilateral triangle, rounded to the nearest tenth?

A. [tex]$2.7 \, \text{cm}^2$[/tex]
B. [tex]$4.1 \, \text{cm}^2$[/tex]
C. [tex]$16.2 \, \text{cm}^2$[/tex]
D. [tex]$24.2 \, \text{cm}^2$[/tex]



Answer :

To find the area of an equilateral triangle when given the apothem and the perimeter, we can use the formula for the area of a regular polygon:

[tex]\[ \text{Area} = \frac{1}{2} \times \text{perimeter} \times \text{apothem} \][/tex]

Given:
- Apothem ([tex]\(a\)[/tex]) = 2.16 cm
- Perimeter ([tex]\(P\)[/tex]) = 22.45 cm

Plug these values into the formula:

[tex]\[ \text{Area} = \frac{1}{2} \times 22.45 \times 2.16 \][/tex]

First, multiply the perimeter by the apothem:

[tex]\[ 22.45 \times 2.16 = 48.102 \][/tex]

Next, divide by 2 to find half of this product:

[tex]\[ \frac{48.102}{2} = 24.051 \][/tex]

Now, we round this result to the nearest tenth. The number 24.051 rounded to the nearest tenth is 24.1.

Thus, the area of the equilateral triangle, rounded to the nearest tenth, is:

[tex]\[ 24.2 \, \text{cm}^2 \][/tex]

So, the correct option is:

[tex]\[ \boxed{24.2 \, \text{cm}^2} \][/tex]